The Use of Artificial Tracer Tests in the Process of Management of Karst Water Resources in Slovenia

  • Metka PetričEmail author
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 68)


Tracer tests with artificial tracers are one of the most useful research techniques in karst hydrogeology. Traditional use of tracer tests in Slovene karst dates back to the end of the nineteenth century. Tracer tests are especially useful for solving specific environmental or engineering problems. They are also increasingly recognized by administrative and management bodies as being useful for management of karst water resources. This chapter provides a brief review of applications of tracer tests: (1) for designation and validation of water protection zones, (2) for planning the water quality monitoring in the impact areas of pollution sources, and (3) for assessment of the threats to karst water sources from traffic. Several examples of best practices are presented, along with study results and suggested guidelines for future development. Finally, an initiative for developing a shared database of tracer tests is introduced. The goal of the database is to compile the results of previous tracer tests within a template that would enable fast and easy data access.


Karst Management Monitoring Slovenia Tracer test Water source 



The tracer test at the Mozelj landfill was supported by the Institute for Mining, Geology and Geotechnology from Ljubljana and the public company Komunala Kočevje which is the landfill manager. The three tracer tests in the area of the planned railway line were supported by the Slovenian Infrastructure Agency/Railway Sector of the Ministry of Infrastructure. This chapter was prepared through the research program “Karst research” (P6-0119) supported by the Slovenian Research Agency.


  1. 1.
    Goldscheider N, Drew D (eds) (2007) Methods in karst hydrogeology. Taylor and Francis, LondonGoogle Scholar
  2. 2.
    Käss W (1998) Tracing technique in geohydrology. A.A. Balkema, Brookfield, RotterdamGoogle Scholar
  3. 3.
    Perrin J, Pochon A, Jeannin PY, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46(2):237–245. Scholar
  4. 4.
    Benischke R, Goldscheider N, Smart CC (2007) Tracer techniques. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, London, pp 147–170Google Scholar
  5. 5.
    Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37:27–40. Scholar
  6. 6.
    Perrin J, Luetscher M (2008) Inference of the structure of karst conduits using quantitative tracer tests and geological information: example of the Swiss Jura. Hydrogeol J 16:951–967. Scholar
  7. 7.
    Kogovsek J, Petric M (2014) Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia). J Hydrol 519:1205–1213. Scholar
  8. 8.
    Müller F (1891) Resultate der Färbung des Höhlenflusses Reka im Karste mit Fluorescein. Mitt Dt Bodenkundl Ges 25:221–232Google Scholar
  9. 9.
    Bertarelli LV, Boegan E (1926) Duemila grotte. Touring Club Italiano, MilanoGoogle Scholar
  10. 10.
    Timeus G (1928) Nei misteri del mondo sotterraneo. Risultati delle ricerche idrologiche sul Timavo 1895–1914, 1918–1927. Alpi Giulie 29(1):2–40Google Scholar
  11. 11.
    Brancelj A, Urbanc J (2000) Karst groundwater connections in the valley of the Seven Triglav Lakes. Acta Carsol 29(1):47–54Google Scholar
  12. 12.
    Čenčur Curk B, Trček B, Veselič M (2001) The study of solute transport with natural and artificial tracers at experimental field site Sinji Vrh. RMZ Mater Geoenviron 48(3):401–413Google Scholar
  13. 13.
    Trišič N, Bat M, Polajnar J, Pristov J (1997) Water balance investigations in the Bohinj region. In: Kranjc A (ed) Tracer hydrology, vol 97. Balkema, Rotterdam, pp 295–298Google Scholar
  14. 14.
    Petrič M (2006) Review of the use of tracer tests on Slovene karst. Paper presented at the international conference all about karst & water: decision making in a sensitive environment, Vienna, 9–11 October 2006Google Scholar
  15. 15.
    Gams I (2003) Kras v Sloveniji v prostoru in času. ZRC Publishing, Ljubljana (in Slovene)Google Scholar
  16. 16.
    Petrič M, Kogovšek J, Ravbar N (2011) Adjustment of the Slovene legislation to the special characteristics of karst aquifers. In: Knez M, Petrič M, Slabe T (eds) Karstology and development challenges on karst 1. ZRC Publishing, Ljubljana, pp 124–136Google Scholar
  17. 17.
    Waters Act (2002) Official Gazette of the Republic of Slovenia 67/2002, 57/2008, LjubljanaGoogle Scholar
  18. 18.
    Rules on criteria for the designation of a water protection zone (2004) Official Gazette of the Republic of Slovenia 64/2004, 5/2006, 58/2011, 15/2016, LjubljanaGoogle Scholar
  19. 19.
    Environment Protection Act (2004) Official Gazette of the Republic of Slovenia 41/2004, 39/2006, 70/2008, 108/2009, LjubljanaGoogle Scholar
  20. 20.
    Rules on groundwater status monitoring (2015) Official Gazette of the Republic of Slovenia 53/2015, LjubljanaGoogle Scholar
  21. 21.
    Kogovšek J, Petrič M (2004) Advantages of longer-term tracing – three case studies from Slovenia. Environ Geol 47:76–83CrossRefGoogle Scholar
  22. 22.
    Kogovšek J (2010) Characteristics of percolation through the karst vadose zone. ZRC Publishing, Postojna–LjubljanaGoogle Scholar
  23. 23.
    Petrič M, Kogovšek J (2016) Identifying the characteristics of groundwater flow in the Classical Karst area (Slovenia/Italy) by means of tracer tests. Environ Earth Sci 75:1446. Scholar
  24. 24.
    Rules on the landfill of waste (2000) Official Gazette of the Republic of Slovenia 5/2000, LjubljanaGoogle Scholar
  25. 25.
    Rules on the monitoring of pollution of underground waters caused by dangerous substances (2000) Official Gazette of the Republic of Slovenia 5/2000, LjubljanaGoogle Scholar
  26. 26.
    Gabrovšek F, Knez M, Kogovšek J, Mihevc A, Mulec J, Otoničar B, Perne M, Petrič M, Pipan T, Prelovšek M, Slabe T, Šebela S, Turk J, Zupan Hajna N (2015) The Beka–Ocizla cave system: karstological railway planning in Slovenia. Springer, ChamGoogle Scholar
  27. 27.
    Vrba J, Zaporozec A (eds) (1994) Guidebook on mapping groundwater vulnerability. Verlag Hienz Heise, HannoverGoogle Scholar
  28. 28.
    Zwahlen F (2004) Vulnerability and risk mapping for the protection of carbonate (karstic) aquifers. Final report COST action 620. European Commission, Directorate-General for Research, BrüsselGoogle Scholar
  29. 29.
    Hölting B, Haertlé T, Hohberger KH, Nachtigall KH, Villinger E, Weinzierl W, Wrobel JP (1995) Konzept zur Ermittlung der Schutzfunkzion der Grundwasserüberdeckung. Geol Jahrb C63:5–24Google Scholar
  30. 30.
    Cività M, De Maio M (1997) SINTACS: Un sistema parametrico per la valutazione e la cartografia della vulnerabilita degli acquiferi all’inquinamento; metodologia & automatizzazione. Pitagora Editrice, BolognaGoogle Scholar
  31. 31.
    Doerfliger N, Zwahlen F (1998) Practical guide, groundwater vulnerability mapping in karstic regions (EPIK). Swiss Agency for the Environment, Forests and Landscape, BernGoogle Scholar
  32. 32.
    GSI (1999) Groundwater protection schemes. Geological Survey of Ireland, DublinGoogle Scholar
  33. 33.
    Janža M, Prestor J (2002) Intrinsic vulnerability assessment of the aquifer in the Rižana spring catchment by the method SINTACS. Geologija 45(2):401–406CrossRefGoogle Scholar
  34. 34.
    Marin AI, Ravbar N, Kovačič G, Andreo Navarro B, Petrič M (2014) Application of methods for resource and source vulnerability mapping in the Orehek karst aquifer, SW Slovenia. In: Mudry J (ed) H2Karst research in limestone hydrogeology. Springer, Cham, pp 139–150Google Scholar
  35. 35.
    Ravbar N (2007) The protection of karst waters. A comprehensive Slovene approach to vulnerability and contaminant risk mapping. ZRC Publishing, LjubljanaGoogle Scholar
  36. 36.
    Ravbar N, Kovačič G (2006) Karst water management in Slovenia in the frame of vulnerability mapping. Acta Carsol 35(2):73–82Google Scholar
  37. 37.
    Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsol 36(3):397–411CrossRefGoogle Scholar
  38. 38.
    Drew D, Hötzl H (eds) (1999) Karst hydrogeology and human activities. Impacts, consequences and implications. A.A. Balkema, RotterdamGoogle Scholar
  39. 39.
    Vadillo I, Carrasco F, Andreo B, Garcia de Torres A, Bosch C (1999) Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain). Environ Geol 37(4):326–332CrossRefGoogle Scholar
  40. 40.
    Kaçaroğlu F (1999) Review of groundwater pollution and protection of karst areas. Water Air Soil Pollut 113:337–356CrossRefGoogle Scholar
  41. 41.
    Vadillo I, Andreo B, Carrasco F (2005) Groundwater contamination by landfill leachates in a karstic aquifer. Water Air Soil Pollut 162:143–169CrossRefGoogle Scholar
  42. 42.
    Eiswirth M, Hötzl H, Jentsch G, Krauthausen B (1999) Contamination of a karst aquifer by a sanitary landfill. In: Drew D, Hötzl H (eds) Karst hydrogeology & human activities. A.A. Balkema, Rotterdam, pp 159–167Google Scholar
  43. 43.
    Zhou W, Beck BF, Pettit AJ, Stephenson BJ (2002) A groundwater tracing investigation as an aid of locating groundwater monitoring stations on the Mitchell Plain of southern Indiana. Environ Geol 41(7):842–851CrossRefGoogle Scholar
  44. 44.
    Kogovšek J, Prelovšek M, Petrič M (2008) Underground water flow between Bloke plateau and Cerknica polje and hydrologic function of Križna jama, Slovenia. Acta Carsol 37(2/3):213–225Google Scholar
  45. 45.
    Gabrovšek F, Kogovšek J, Kovačič G, Petrič M, Ravbar N, Turk J (2010) Recent results of tracer tests in the catchment of the Unica River (SW Slovenia). Acta Carsol 39(1):27–37CrossRefGoogle Scholar
  46. 46.
    Petrič M, Šebela S (2005) Hydrogeological research as a basis for the preparation of the plan of monitoring groundwater contamination – a case study of the Stara vas landfill near Postojna (SW Slovenia). Acta Carsol 34(2):489–506Google Scholar
  47. 47.
    Kogovšek J, Petrič M (2006) Tracer test on the Mala gora landfill near Ribnica in south-eastern Slovenia. Acta Carsol 35(2):91–101Google Scholar
  48. 48.
    Kogovšek J, Petrič M (2007) Directions and dynamics of flow and transport of contaminants from the landfill near Sežana (SW Slovenia). Acta Carsol 36(3):413–424CrossRefGoogle Scholar
  49. 49.
    Kogovšek J, Petrič M (2010) Tracer tests as a tool for planning the monitoring of negative impacts of the Mozelj landfill (SE Slovenia) on karst waters. Acta Carsol 39(2):301–311CrossRefGoogle Scholar
  50. 50.
    Kogovšek J, Petrič M (2013) Increase of vulnerability of karst aquifers due to leakage from landfills. Environ Earth Sci 70(2):901–912. Scholar
  51. 51.
    Habič P, Kogovšek J, Bricelj M, Zupan M (1990) Izviri Dobličice in njihovo širše kraško zaledje. Acta Carsol 19:5–100 (in Slovene)Google Scholar
  52. 52.
    Archive hydrological data (2016) Slovenian Environment Agency, Ljubljana. Accessed 22 Dec 2016
  53. 53.
    Čenčur Curk B, Pregl M, Petrič M, Kogovšek J (2007) Hydrogeological monitoring of the landfills on karst. Paper presented at the international conference waste management, environmental geotechnology and global sustainable development, University of Ljubljana, Ljubljana, 28–30 August 2007Google Scholar
  54. 54.
    Environmental Atlas (2010) Slovenian Environment Agency, Ljubljana. Accessed 11 Mar 2010
  55. 55.
    Zhou W, Beck BF (2005) Roadway construction in karst areas: management of stormwater runoff and sinkhole risk assessment. Environ Geol 47(8):1138–1149CrossRefGoogle Scholar
  56. 56.
    Knez M, Slabe T (eds) (2016) Cave exploration in Slovenia. Discovering over 350 new caves during motorway construction on classical karst. Springer, ChamGoogle Scholar
  57. 57.
    Decree on determining the drinking water protection area for the aquifers of Rižana (2008) Official Gazette of the Republic of Slovenia 49/2008, 72/2012, LjubljanaGoogle Scholar
  58. 58.
    Petrič M, Kogovšek J (2011) Assessment of the possible impact of the construction of the Divača-Koper rail-way line on the quality of karst waters. In: Prelovšek M, Zupan Hajna N (eds) Pressures and protection of the underground karst: cases from Slovenia and Croatia. Karst Research Institute ZRC SAZU, Postojna, pp 138–146Google Scholar
  59. 59.
    Mosetti F (1989) Problemi di marcatura delle acque. Carsismo e idrologia carsica nel Friuli-Venezia Giulia. Quad ETP Riv Limnol 17:125–152Google Scholar
  60. 60.
    Meteo (2016) Slovenian Environment Agency, Ljubljana. Accessed 22 Dec 2016
  61. 61.
    Water Data (2016) Slovenian Environment Agency, Ljubljana. Accessed 22 Dec 2016

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Karst Research Institute ZRC SAZUPostojnaSlovenia

Personalised recommendations