Advertisement

Groundwater for Human Consumption in Karst Environment: Vulnerability, Protection, and Management

  • A. Jiménez-MadridEmail author
  • R. Gogu
  • C. Martinez-Navarrete
  • F. Carrasco
Chapter
  • 338 Downloads
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 68)

Abstract

Karst aquifers are an essential source of water supply; therefore the need to protect karst groundwater against the deterioration of its quality due to human activities is unquestionable. For this reason, it is necessary to integrate and reconcile the safeguards of its quality with both socioeconomic activities and land-use planning for a certain region. In this sense, intrinsic vulnerability to pollution is a useful tool to establish protective measures in karst aquifers characterized by their heterogeneity, along with other criteria.

Assessment of intrinsic vulnerability to pollution can help enhance protection of water used for human consumption through quantifying the risk of contamination and spatial zonation of masses of waters. There is a great diversity of existing methods for characterization of intrinsic vulnerability; therefore a comparative analysis of different methods of assessment of the intrinsic vulnerability to pollution has been conducted. This chapter describes the use of several methods (PI, COP, SLV, and PaPRIKa) to assess the intrinsic vulnerability on a karstic aquifer in Spain. Comparison of the different methods enabled assessment of suitability of intrinsic vulnerability to pollution as a method to delimit safeguard areas to protect waters for human consumption.

Keywords

Groundwater protection Karst Management Spain Vulnerability 

Notes

Acknowledgment

The work has been done in the frame of the VULMOD (new vulnerability assessment by combining mapping with modeling approaches) project, supported by the Executive Agency for Higher Education of the Ministry of National Education, Romania. This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, Project number PN-II-RU-TE-2014-4-2127.

References

  1. 1.
    Foster SSD (1998) Groundwater recharge and pollution vulnerability of British aquifers: a critical overview. In: Robin NS (ed) Geological Society Special Publication N° 130, pp 7–22CrossRefGoogle Scholar
  2. 2.
    Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  3. 3.
    Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    White WB (2007) Fifty years of karst hydrology and hydrogeology: 1953–2003. In: Harmon RS, Wicks CM (eds) Perspectives on karst geomorphology, hydrology and geochemistry. A tribute volume to Derek C. Ford and William B. White, Geological Society of America Special Paper, 404, pp 139–152Google Scholar
  5. 5.
    COST 65 (1995) Hydrogeological aspects of groundwater protection in karstic areas. Report EUR 16574 EN, Directorate-General, Science, research and development. European Commission, Brüssel, p 446Google Scholar
  6. 6.
    Moreno Merino L, Martínez Navarrete C, López Geta JA, Navarrete Martínez P (1991) Methodological guide for the elaboration of perimeters of protection of groundwater abstractions. Spanish Geological Survey, Madrid, p 289Google Scholar
  7. 7.
    Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles MJ, Zwahlen F (2006) Karst groundwater protection: first application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain). Sci Total Environ 357(1–3):54–73CrossRefGoogle Scholar
  8. 8.
    UNESCO (2006) Water a shared responsibility. In: Second United Nations report on the development of water resources in the world. UN-Water/WWAP/2006/3. World Water Assessment Program. United Nations Educational, Scientific and Cultural Organization, ParisGoogle Scholar
  9. 9.
    Wang W (2006) Optimal environmental management strategy and implementation for groundwater contamination, prevention and restoration. Environ Manag 37:553–566CrossRefGoogle Scholar
  10. 10.
    Hirata R, Rebouças A (1999) Protection of groundwater resources: an integrated vision based on well protection perimeters and aquifer vulnerability. Geol Min Bull 110(4):79–92Google Scholar
  11. 11.
    Drew D, Hötzl H (1999) Karst hydrogeology and human activities. In: Drew D, Hötzl H (eds) International contributions to hydrogeology. A.A. Balkema, RotterdamGoogle Scholar
  12. 12.
    WWAP (2006) The state of the resource. World water development report 2, chapter 4. World Water Assessment Program. United Nations Educational, Scientific and Cultural Organization, ParisGoogle Scholar
  13. 13.
    Zwahlen F (ed) (2004) Action COST 620. Vulnerability and risk mapping for the protection of carbonate (Karstic) Aquifers. WFD Final report. Brussels, Luxembourg, p 297Google Scholar
  14. 14.
    Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10(2):340–345CrossRefGoogle Scholar
  15. 15.
    Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in Southern Spain. Hydrogeol J 14:912–925CrossRefGoogle Scholar
  16. 16.
    ENBATA (2007) Karst of Galdames. Unpublished report. País Vasco, SpainGoogle Scholar
  17. 17.
    URA (2004) Annual report of the Basque Water Agency. País Vasco, SpainGoogle Scholar
  18. 18.
    Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden W, Van Waegeningh H (eds) Vulnerability of soil and groundwater to pollution. The Hague, pp 69–86Google Scholar
  19. 19.
    Vrba J, Zoporozec A (1994) Guidebook on mapping groundwater vulnerability. Heise, Hanover, p 131Google Scholar
  20. 20.
    Jiménez-Madrid A, Carrasco-Cantos F, Martínez-Navarrete C (2011) Protection of groundwater intended for human consumption: a proposed methodology for defining safeguard zones. Environ Earth Sci 65:2391–2406CrossRefGoogle Scholar
  21. 21.
    Aller L, Bennett T, Lehr J, Petty J (1987) DRASTIC: a standardised system for evaluating groundwater pollution potential using hydrogeologic settings. US Environmental Protection Agency, Oklahoma, p 455Google Scholar
  22. 22.
    Van Stempvoort D, Ewert L, Wassenaar L (1993) Aquifer vulnerability index (AVI). A GIS compatible method for groundwater vulnerability mapping. Can Water Resour J 18:25–37CrossRefGoogle Scholar
  23. 23.
    Civita M (1994) Le carte Della vulnerabilità degli acquiferi all’inquinamiento. In: Studio sulla vulneerabilità degli acquiferi. Teoria & Practica. Pitagora Editrice, Bolonia, p 325Google Scholar
  24. 24.
    Civita M, De Regibus C (1995) Sperimentazione di alcune metodologie per la valutazione della vulnerabilità degli aquiferi. Q Geol Appl 3:63–71Google Scholar
  25. 25.
    Hölting B, Haertle T, Hohberger KH, Nachtigall KH, Villinger E, Weinzierl W, Wrobel JP (1995) Concept for the determination of the protective effectiveness of the cover above the groundwater against pollution. Ad-hoc Working Group on Hydrogeology, Hannover, p 28Google Scholar
  26. 26.
    Doerfliger N (1996) Advances in karst groundwater protection strategy using artificial tracer test analysis on a multiattribute vulnerability mapping (EPIK method). Doctoral Thesis, Universidad de Neuchâtel, Suiza, 30 pGoogle Scholar
  27. 27.
    Goldscheider N, Klute M, Sturm S, Höltz H (2000) The PI method – a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Zeitschrift fur Angewandte Geologie 46(3):157–166Google Scholar
  28. 28.
    Petelet Giraud E, Doerfliger N, Crochet P (2000) RISKE: Méthode d’evaluation multicritère de la cartographie de la vulnérabilité des aquifères karstiques. Aplications aux systèmes des Fontanilles et Cent-Fonts (Hérault, France). Hydrogéolgie 4:71–88Google Scholar
  29. 29.
    Doerfliger N, Jauffret D, Loubier S (2004) Cartographie de la vulnérabilité des aquifères karstiques en Franche Comté, avec la collaboration de V. Petit. Rapport BRGM RP-53576-FR, p 140Google Scholar
  30. 30.
    Doerfliger N (2005) Guide méthodologique, cartographie de la vulnérabilité en vue de la délimitation des périmètres de protection en milieu karstique. Annexe du rapport BRGM/RP-53576-FR, p 247Google Scholar
  31. 31.
    Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica 36(3):461–475CrossRefGoogle Scholar
  32. 32.
    Doerfliger N, Plagnes V (2009) Cartographie de la vulnerabilité des aquifères karstiques, guide méthodologique de la méthode PaPRIKa. BRGM RP-57527-FR. France, p 148Google Scholar
  33. 33.
    Jimenez-Madrid A, Carrasco F, Martınez C, Gogu RC (2013) DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Q J Eng Geol Hydrogeol 46:245–255.  https://doi.org/10.1144/qjegh2012-038CrossRefGoogle Scholar
  34. 34.
    Jeanin PY, Cornaton F, Zwahlen F, Perrochet P (2001) VULK: a tool for intrinsic vulnerability assessment and validation. In: Seventh Conference on Limestone Hydrology and Fissured Media, Besançon, pp 185–190Google Scholar
  35. 35.
    Andreo B, Ravbar N, Vías JM (2008) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17:749–758CrossRefGoogle Scholar
  36. 36.
    Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overly and index methods. Environ Geol 39(6):549–559CrossRefGoogle Scholar
  37. 37.
    Vías J, Andreo B, Ravbar N, Hötzl H (2010) Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe. J Environ Manag 91(7):1500–1510CrossRefGoogle Scholar
  38. 38.
    Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51(5):689–694CrossRefGoogle Scholar
  39. 39.
    Popescu IC, Brouyère S, Derouane J, Dassargues A (2010) Physically-based groundwater vulnerability assessment for groundwater protection and land-use management. In: Symposium de la Meuse 2010. Lieja, BélgicaGoogle Scholar
  40. 40.
    Martínez-Navarrete C, Jiménez-Madrid A, Sánchez-Navarro I, Carrasco-Cantos F, Moreno-Merino L (2011) Conceptual framework for protecting groundwater quality. Int J Water Resour Dev 27(1):227–243CrossRefGoogle Scholar
  41. 41.
    Jiménez-Madrid A, Carrasco-Cantos F, Martínez-Navarrete C (2016) Activities permitted cartography: the integration of groundwater protection into land-use planning. Environ Earth Sci 75(20):1372.  https://doi.org/10.1007/s12665-016-6197-xCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • A. Jiménez-Madrid
    • 1
    • 2
    Email author
  • R. Gogu
    • 1
  • C. Martinez-Navarrete
    • 3
  • F. Carrasco
    • 4
  1. 1.Groundwater Engineering Research Center, Technical University of Civil Engineering of BucharestBucharestRomania
  2. 2.PROAMB Integrada ConsultorsMalagaSpain
  3. 3.Spanish Geological SurveyMadridSpain
  4. 4.University of MalagaMalagaSpain

Personalised recommendations