Skip to main content
Book cover

Biogas pp 333–353Cite as

Techno-Economic Aspects of Biogas Plants

  • Chapter
  • First Online:

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 6))

Abstract

Farming and forestry residues are predicted to be the main sources of biogas to meet the future feedstock demands. The main constituents of these lignocellulosic feedstocks are cellulose, hemicellulose and lignin. The biological conversion of these feedstocks to biogas suffers from poor yield and slow reactions, and thus, commercial biogas production from lignocelluloses faces with economical infeasibility. The process economy could be enhanced by the application of new pretreatment and digestion technologies. However, the profitability of these new technologies should be evaluated prior to the plant construction phase. Techno-economic analysis includes process development and economic evaluation for such processes. In this chapter, the method for techno-economic analysis including process development and simulation, economic estimations and profitability analysis are presented. Furthermore, the results of techno-economic analysis and the parameters affecting such results are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Swedish kronor

References

  • Aden A et al (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, US Department of Energy

    Google Scholar 

  • Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16(4):535–545

    Article  Google Scholar 

  • Akbulut A (2012) Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 44(1):381–390

    Article  MathSciNet  Google Scholar 

  • Anex RP et al (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89(Supplement 1):S29–S35

    Article  Google Scholar 

  • AspenTech (2017) Aspen Plus®, cited 2017; Available from http://home.aspentech.com/products/engineering/aspen-plus/

  • Balan V, Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7(6):732–759

    Article  Google Scholar 

  • Barta Z, Reczey K, Zacchi G (2010) Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process. Biotechnol Biofuels 3(1):21

    Article  Google Scholar 

  • Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26(1):7–13

    Article  Google Scholar 

  • Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Biores Technol 178:166–176

    Article  Google Scholar 

  • Brown TR et al (2014) 2—Techno-economic assessment (TEA) of advanced biochemical and thermochemical biorefineries, In: Waldron K (ed) Advances in biorefineries. Woodhead Publishing, pp 34–66

    Chapter  Google Scholar 

  • Cakir FY, Stenstrom MK (2005) Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology. Water Res 39(17):4197–4203

    Article  Google Scholar 

  • Chovau S, Degrauwe D, Van der Bruggen B (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew Sustain Energy Rev 26:307–321

    Article  Google Scholar 

  • Douglas JM (1988) Conceptual design of chemical processes. McGraw-Hill chemical Engineering series. McGraw-Hill, Singapour, p 601

    Google Scholar 

  • Dutta A et al (2010) An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol Prog 26(1):64–72

    Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025

    Article  Google Scholar 

  • EIA (2013) Monthly energy review: energy consumption by sector. Available from http://www.eesi.org/files/00351304.pdf

  • EIA (2016) International Energy Outlook 2016. Independent Statistics & Analysis 2016; Available from: https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf

  • European Commission (2016) Waste, cited 2017; Available from http://ec.europa.eu/environment/waste/landfill_index.htm

  • Findeisen C (2015) The importance of safety standards, risk assessment and operators training for a successful biogas market development. In: UNIDO Biogas Workshop. German Biogas Association, Fachverband Biogas e.V., Vienna

    Google Scholar 

  • Galbe M, Wallberg O, Zacchi G (2011) Techno-economic aspects of ethanol production from lignocellulosic agricultural crops and residues. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 615–628

    Chapter  Google Scholar 

  • Gnansounou E, Vaskan P, Pachón ER (2015) Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Biores Technol 196:364–375

    Article  Google Scholar 

  • Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28(4):384–410

    Article  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Biores Technol 100(22):5478–5484

    Article  Google Scholar 

  • Humbird D, Aden A (2009) Biochemical production of ethanol from corn stover: 2008 state of technology model, NREL/TP-510-46214. National Renewable Energy Laboratory, US Department of Energy

    Google Scholar 

  • Humbird D et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol, dilute-acid pretreatment and enzymatic hydrolysis of corn stover, Technical Report NREL/TP-5100-47764. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Igliński B, Buczkowski R, Cichosz M (2015) Biogas production in Poland—current state, potential and perspectives. Renew Sustain Energy Rev 50:686–695

    Article  Google Scholar 

  • Iranmahboob J, Nadim F, Monemi S (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenerg 22(5):401–404

    Article  Google Scholar 

  • Jalalzadeh-Azar A (2010) Technoeconomic analysis of biomethane production from biogas and pipeline delivery (Presentation). National Renewable Energy Laboratory: United States. Department of Energy

    Google Scholar 

  • Kabir MM, Forgács G, Horváth I Sárvári (2015a) Biogas from lignocellulosic materials. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, pp 207–251

    Google Scholar 

  • Kabir MM et al (2015b) Experimental and economical evaluation of bioconversion of forest residues to biogas using organosolv pretreatment. Biores Technol 178:201–208

    Article  Google Scholar 

  • Karimi K, Shafiei M, Kumar R (2013a) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK, Tuohy MG (eds) Biofuel technologies: recent developments. Springer, Heidelberg, pp 53–96

    Chapter  Google Scholar 

  • Karimi K, Shafiei M, Kumar R (2013b) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK, Tuohy MG (eds) Biofuel technologies. Springer, Heidelberg, pp 53–96

    Chapter  Google Scholar 

  • Kazi FK et al (2010) Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol, NREL/TP-6A2-46588. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Klein-Marcuschamer D et al (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenerg 34(12):1914–1921

    Article  Google Scholar 

  • Kormi T et al (2017) Estimation of landfill methane emissions using stochastic search methods. Atmos Pollut Res 8(4):597–605

    Article  Google Scholar 

  • Larsson M et al (2015) Techno-economic assessment of anaerobic digestion in a typical Kraft pulp mill to produce biomethane for the road transport sector. J Clean Prod 104:460–467

    Article  Google Scholar 

  • Lauer M (2017) Methodology guideline on techno economic assessment (TEA) in ThermalNet TEA Methodology Guideline. Intelligent Energy Europe

    Google Scholar 

  • Li S et al (2015a) Assessing the role of renewable energy policies in landfill gas to energy projects. Energy Econ 49:687–697

    Article  Google Scholar 

  • Li J et al (2015b) Mass flow and energy balance plus economic analysis of a full-scale biogas plant in the rice–wine–pig system. Biores Technol 193:62–67

    Article  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Env 21(1):403–465

    Article  MathSciNet  Google Scholar 

  • Maciejczyk M (2014) Safety of biogas plants. German Biogas Association, Fachverband Biogas e.V., Bangkok

    Google Scholar 

  • Mao C et al (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  Google Scholar 

  • McAloon A et al (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks, NREL/TP-580-28893. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Mel M et al (2015) Simulation study for economic analysis of biogas production from agricultural biomass. Energy Procedia 65:204–214

    Article  Google Scholar 

  • Meyer AKP, Ehimen EA, Holm-Nielsen JB (2017) Future European biogas: animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy

    Google Scholar 

  • Mussoline W et al (2012) Design considerations for a farm-scale biogas plant based on pilot-scale anaerobic digesters loaded with rice straw and piggery wastewater. Biomass Bioenerg 46:469–478

    Article  Google Scholar 

  • NREL (2013) Biogas potential in the United States, NREL/FS-6A20-60178. National Renewable Energy Laboratory, The U.S. Department of Energy

    Google Scholar 

  • Patterson T et al (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 39(3):1806–1816

    Article  Google Scholar 

  • Persson M (2003) Evaluation of upgrading techniques for biogas

    Google Scholar 

  • Peters MS, Timmerhaus K, West RE (2003) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill Education

    Google Scholar 

  • Piccolo C, Bezzo F (2009) A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33(3):478–491

    Article  Google Scholar 

  • Pike Research (2012) Worldwide power generation capacity from biogas will double by 2022. Available from: http://www.businesswire.com/news/home/20121107005284/en/Worldwide-Power-Generation-Capacity-Biogas-Double-2022-.U3NpFViSwwk

  • Poeschl M, Ward S, Owende P (2010) Prospects for expanded utilization of biogas in Germany. Renew Sustain Energy Rev 14(7):1782–1797

    Article  Google Scholar 

  • Rajendran K et al (2014) Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): a case study on an industrial process. Appl Energy 125:84–92

    Article  Google Scholar 

  • Sárvári Horváth I et al (2016) Recent updates on biogas production—a review. Biofuel Res J 3(2):394–402

    Article  Google Scholar 

  • Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 5

    Google Scholar 

  • Scharff H (2014) Landfill reduction experience in The Netherlands. Waste Manag 34(11):2218–2224

    Article  Google Scholar 

  • Sendich E et al (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Biores Technol 99(17):8429–8435

    Article  Google Scholar 

  • Shafiei M, Karimi K, Taherzadeh MJ (2011) Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion. Bioresour Technol 102(17):7879–7886

    Article  Google Scholar 

  • Shafiei M et al (2013) Techno-economical study of biogas production improved by steam explosion pretreatment. Bioresour Technol 148:53–60

    Article  Google Scholar 

  • Shafiei M et al (2014) Economic impact of NMMO pretreatment on ethanol and biogas production from pinewood. Biomed Res Int 2014:13

    Google Scholar 

  • Shafiei M, Kumar R, Karimi K (2015) Pretreatment of lignocellulosic biomass. In: Karimi K (ed) Lignocellulose-based bioproducts. Springer International Publishing, Cham, pp 85–154

    Google Scholar 

  • Smith R (2005) Chemical process design and integration, 3rd edn. Wiley, England

    Google Scholar 

  • Sun Q et al (2015) Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev 51:521–532

    Article  Google Scholar 

  • Swanson RM et al (2010) Techno-economic analysis of biofuels production based on gasification, Technical Report NREL/TP-6A20-46587. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials. BioResources 2:707–738

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2008a) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008b) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  Google Scholar 

  • Tan ECD et al (2016) Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates. Biofuels Bioprod Biorefin 10(1):17–35

    Article  Google Scholar 

  • Tao LA, Aden A, Elander RT (2013) Economics of pretreatment for biological processing. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, UK

    Google Scholar 

  • Tao L et al (2014) NREL 2012 achievement of ethanol cost targets: biochemical ethanol fermentation via dilute-acid pretreatment and enzymatic hydrolysis of corn stover, Technical Report NREL/TP-5100-61563. National Renewable Energy Laboratory, U.S. Department of Energy

    Google Scholar 

  • Turton R, Bailie RC, Whiting WB (2009) Analysis, synthesis, and design of chemical processes, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • von Sivers M, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 1

    Google Scholar 

  • von Sivers M, Zacchi G (1996) Ethanol from lignocellulosics: a review of the economy. Bioresour Technol 56:131–140

    Article  Google Scholar 

  • Werner U, Stoehr U, Hees N (1989) Biogas plants in animal husbandry. German Appropriate Technology Exchange (GATE) and German Agency for Technical Cooperation (GTZ) GmbH

    Google Scholar 

  • Westenbroek PA, Martin J (2017) Anaerobic digesters and biogas safety, cited 2017; Available from http://articles.extension.org:80/pages/30311/anaerobic-digesters-and-biogas-safety

  • Wooley R et al (1999a) Lignocellulosic biomass to ethanol—process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis—current and futuristic scenarios, NREL/TP-580-26157

    Google Scholar 

  • Wooley R et al (1999b) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 5

    Google Scholar 

  • Wiese J, König R Application report, laboratory analysis & process analysis, biogas plant monitoring. Lellbach biogas plant

    Google Scholar 

  • Yliopisto J (2009) Evaluation of potential technologies and operational scales reflecting market needs for low-cost gas upgrading systems. In: Seventh framework programme theme energy, Biowaste as feedstock for 2nd generation

    Google Scholar 

  • Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22(1):46–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Shafiei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shafiei, M. (2018). Techno-Economic Aspects of Biogas Plants. In: Tabatabaei, M., Ghanavati, H. (eds) Biogas. Biofuel and Biorefinery Technologies, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-77335-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77335-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77334-6

  • Online ISBN: 978-3-319-77335-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics