Optimal Modularity in Complex Contagion

  • Azadeh Nematzadeh
  • Nathaniel Rodriguez
  • Alessandro Flammini
  • Yong-Yeol AhnEmail author
Part of the Computational Social Sciences book series (CSS)


In this chapter, we apply the theoretical framework introduced in the previous chapter to study how the modular structure of the social network affects the spreading of complex contagion. In particular, we focus on the notion of optimal modularity, that predicts the occurrence of global cascades when the network exhibits just the right amount of modularity. Here we generalize the findings by assuming the presence of multiple communities and a uniform distribution of seeds across the network. Finally, we offer some insights into the temporal evolution of cascades in the regime of the optimal modularity.


  1. 1.
    Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443CrossRefGoogle Scholar
  2. 2.
    Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Gleeson JP (2008) Cascades on correlated and modular random networks. Phys Rev E 77(4):046117MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Nematzadeh A, Ferrara E, Flammini A, Ahn Y-Y (2014) Optimal network modularity for information diffusion. Phys Rev Lett 113(8):088701CrossRefADSGoogle Scholar
  5. 5.
    Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582CrossRefADSGoogle Scholar
  7. 7.
    Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197CrossRefADSGoogle Scholar
  8. 8.
    Weng L, Menczer F, Ahn Y-Y (2013) Virality prediction and community structure in social networks. Sci Rep 3:2522CrossRefADSGoogle Scholar
  9. 9.
    Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118CrossRefADSGoogle Scholar
  10. 10.
    Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78:046110CrossRefADSGoogle Scholar
  11. 11.
    Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425CrossRefGoogle Scholar
  12. 12.
    Wang S-J, Hilgetag CC, Zhou C (2011) Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. Front Comput Neurosci 5(30):1–14Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Azadeh Nematzadeh
    • 1
  • Nathaniel Rodriguez
    • 1
  • Alessandro Flammini
    • 1
  • Yong-Yeol Ahn
    • 1
    Email author
  1. 1.Center for Complex Networks and Systems Research, School of Informatics and ComputingIndiana UniversityBloomingtonUSA

Personalised recommendations