Advertisement

Network Experiments Through Academic-Industry Collaboration

  • Robert M. Bond
  • Christopher J. Fariss
  • Jason J. Jones
  • Jaime E. Settle
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

Our main goal in this chapter is to summarize and describe our work on get-out-the-vote experiments run on the Facebook social media platform. We ran randomized experiments and observed both direct effects—a message on Election Day made Facebook users more likely to vote and cascading effects in the social network—the friends of treated users became more likely to vote. Collaborating with Facebook vastly increased the scope of our research project from what we originally planned. We will also discuss why academic collaboration with industry is not only important in general, but particularly important for understanding complex social systems. We will conclude with a discussion of some of the opportunities we see for scientific advancement in this area.

References

  1. 1.
    Adcock R, Collier D (2001) Measurement validity: a shared standard for qualitative and quantitative research. Am Polit Sci Rev 95(3):529–546CrossRefGoogle Scholar
  2. 2.
    Aral S, Walker D (2012) Identifying influential and susceptible members of social networks. Science 337(6092):337–341MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Arceneaux K, Nickerson DW (2009) Who is mobilized to vote? A re-analysis of 11 field experiments. Am J Polit Sci 53(1):1–16CrossRefGoogle Scholar
  4. 4.
    Aronow PM (2012) A general method for detecting interference between units in randomized experiments. Sociol Methods Res 41(1):3–16MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Athey S, Eckles D, Imbens GW (forthcoming) Exact P-values for network interference. J Am Stat Assoc. https://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1241178
  6. 6.
    Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on web search and data mining, pp 65–74Google Scholar
  7. 7.
    Bond RM, Messing S (2015) Quantifying social media’s political space: estimating ideology from publicly revealed preferences on Facebook. Am Polit Sci Rev 109(1):62–78CrossRefGoogle Scholar
  8. 8.
    Bond RM, Fariss CJ, Jones JJ, Kramer ADI, Marlow C, Settle JE, Fowler JH (2012) A 61-million-person experiment in social influence and political mobilization. Nature 489(7415):295–298CrossRefADSGoogle Scholar
  9. 9.
    Bond RM, Settle JE, Fariss CJ, Jones JJ, Fowler JH (2017) Social endorsement cues and political participation. Polit Commun 34(2):261–281CrossRefGoogle Scholar
  10. 10.
    Burt RS (1997) A note on social capital and network capital. Social Netw 19(4):355–373Google Scholar
  11. 11.
    Campbell DT (1960) Recommendation for APA test standards regarding construct, trait, or discriminant validity. Am Psychol 15:546–553CrossRefGoogle Scholar
  12. 12.
    Christakis NA, Fowler JH (2008) The spread of obesity in a large social network over 32 years. N Engl J Med 357(4):370–379CrossRefGoogle Scholar
  13. 13.
    Christakis NA, Fowler JH (2013) Social contagion theory: examining dynamic social networks and human behavior. Stat Med 32(4):556–577MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cook TD, Campbell DT (1979) Quasi-experimentation: design and analysis for field settings. Houghton Mifflin, BostonGoogle Scholar
  15. 15.
    Coviello L, Sohn Y, Kramer ADI, Marlow C, Franceschetti M, Christakis NA, Fowler, JA (2014) Detecting emotional contagion in massive social networks. PLoS One 9(3):e90315CrossRefADSGoogle Scholar
  16. 16.
    Coviello L, Fowler JH, Franceschetti M (2014) Words on the web: noninvasive detection of emotional contagion in online social networks. Proc IEEE 102(12):1911–1921CrossRefGoogle Scholar
  17. 17.
    Crabtree CD, Fariss CJ (2016) Stylized facts and experimentation. Sociol Sci 3:910–914CrossRefGoogle Scholar
  18. 18.
    Dale A, Strauss A (2016) Don’t forget to vote: text message reminders as a mobilization tool. Am J Polit Sci 53(4):787–804CrossRefGoogle Scholar
  19. 19.
    Dunning T (2012) Natural experiments in the social sciences: a design-based approach. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Fariss CJ, Jones ZM (2017) Enhancing validity in observational settings when replication is not possible. Polit Sci Res Methods.  https://doi.org/10.1017/psrm.2017.5
  21. 21.
    Farrell, H (2012) The consequences of the internet for politics. Ann Rev Polit Sci 15:35–52CrossRefGoogle Scholar
  22. 22.
    Fowler JH (2005) Turnout in a small world. In: Zuckerman A (ed) The social logic of politics: personal networks as contexts for political behavior. Temple University Press, PhiladelphiaGoogle Scholar
  23. 23.
    Fowler JH, Christakis NA (2010) Cooperative behavior cascades in human social networks. Proc Natl Acad Sci 107(12):5334–5338CrossRefADSGoogle Scholar
  24. 24.
    Fowler JH, Heaney MT, Nickerson DW, Padgett JF, Sinclair B (2011) Causality in political networks. Am Polit Res 39(2):437–480CrossRefGoogle Scholar
  25. 25.
    Garcia-Herranz M, Moro E, Cebrian M, Christakis NA, Fowler JH (2014) Using friends as sensors to detect global-scale contagious outbreaks. PLoS One 9(4):e92413CrossRefADSGoogle Scholar
  26. 26.
    Gee LK, Jones JJ, Fariss CJ, Burke M, Fowler JH (2017) The paradox of weak ties in 55 countries. J Econ Behav Organ 133(Janurary):362–372CrossRefGoogle Scholar
  27. 27.
    Gee LK, Jones JJ, Burke M (2017) Social networks and labor markets: how strong ties relate to job finding on facebook’s social network. J Labor Econ. https://doi.org/10.1086/686225
  28. 28.
    Godino J, Merchant G, Norman GJ, Donohue MC, Marshall SJ, Fowler JH, Calfas KJ, Huang JS, Rock CL, Griswold WG, Gupta A, Raab F, Fogg BJ, Robinson TN, Patrick K (2016) Using social and mobile tools for weight loss in overweight and obese young adults (Project SMART): a 2 year, parallel-group, randomised, controlled trial. Lancet Diabetes Endocrinol 4(9):747–755CrossRefGoogle Scholar
  29. 29.
    González MC, Hidalgo CA, Barabási A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782CrossRefADSGoogle Scholar
  30. 30.
    Gordon PI (2005) Permutation, parametric, and bootstrap tests of hypotheses. Springer, BerlinGoogle Scholar
  31. 31.
    Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380CrossRefGoogle Scholar
  32. 32.
    Green DP, Gerber AS (2002) Reclaiming the experimental tradition in political science. In: Katznelson I, Milner HV (eds) Political science: state of the discipline. W. W. Norton, New YorkGoogle Scholar
  33. 33.
    Green D, Gerber AS (2004) Get out the vote!: a guide for candidates and campaigns. Brookings Institution Press, WashingtonGoogle Scholar
  34. 34.
    Green DP, Gerber AS (2008) Get out the vote: how to increase voter turnout. Brookings Press, Washington, DCGoogle Scholar
  35. 35.
    Hampton KN, Sessions LF, Her EJ (2011) Core networks, social isolation, and new media: how internet and mobile phone use is related to network size and diversity. Inform Commun Soc 14(1):130–155CrossRefGoogle Scholar
  36. 36.
    Hobbs WR, Burke M, Christakis NA, Fowler JH (2016) Online social integration is associated with reduced mortality risk. Proc Natl Acad Sci 113(46):12980–12984CrossRefGoogle Scholar
  37. 37.
    Jones JJ, Settle JE, Bond RM, Fariss CJ, Marlow C, Fowler JH (2013) Inferring tie strength from online directed behavior. PLoS One 8(1):e52168CrossRefADSGoogle Scholar
  38. 38.
    Jones JJ, Bond RM, Fariss CJ, Settle JE, Kramer ADI, Marlow C, Fowler JH (2013) Yahtzee: an anonymized group level matching procedure. PLoS One 8(2):e55760CrossRefADSGoogle Scholar
  39. 39.
    Jones JJ, Bond RM, Bakshy E, Eckles D, Fowler JH (2017) Social influence and political mobilization: further evidence from a randomized experiment in the 2012 U.S. presidential election. PLoS One 12(4):e0173851CrossRefGoogle Scholar
  40. 40.
    Kahn JP, Vayena E, Mastroianni AC (2014) Opinion: learning as we go: lessons from the publication of Facebook’s social-computing research. Proc Natl Acad Sci 111(38): 13677–13679CrossRefADSGoogle Scholar
  41. 41.
    Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining pp 137–146Google Scholar
  42. 42.
    Kim DA, Hwong AR, Stafford D, Hughes DA, O’Malley AJ, Fowler JH, Christakis, NA (2015) Social network targeting to maximise population behaviour change: a cluster randomised controlled trial. Lancet 386(9989):145–153CrossRefGoogle Scholar
  43. 43.
    Kramer ADI, Guillory JE, Hancock JT (2014) Experimental evidence of massive-scale emotional contagion through social networks. Proc Natl Acad Sci 111(24):8788–8790CrossRefADSGoogle Scholar
  44. 44.
    Lazer D, Pentland A, Adamic L, Aral S, Barabási A-L, Brewer D, Christakis NA, Contractor N, Fowler JH, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M (2009) Comput Soci Sci Science 323:721–723Google Scholar
  45. 45.
    Leas EC, Althouse BM, Dredze M, Obradovich N, Fowler JH, Noar SM, Allem J-P, Ayers JW (2016) Big data sensors of organic advocacy: the case of Leonardo DiCaprio and climate change. PLoS ONE 11(8):e0159885CrossRefGoogle Scholar
  46. 46.
    Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christakis N (2008) Tastes, ties, and time: a new social network dataset using Facebook.com. Soc Netw 30(4):330–342CrossRefGoogle Scholar
  47. 47.
    Marsden PV (1987) Core discussions networks of Americans. Am Sociol Rev 52(1):122–131CrossRefGoogle Scholar
  48. 48.
    Meyer M (2014) Misjudgements will drive social trials underground. Nature 511(7509):265CrossRefADSGoogle Scholar
  49. 49.
    Nickerson DW (2007) Does email boost turnout? Q J Polit Sci 2(4):369CrossRefGoogle Scholar
  50. 50.
    Nickerson DW (2008) Is voting contagious? Evidence from two field experiments. Am Polit Sci Rev 102(1):49–57CrossRefGoogle Scholar
  51. 51.
    Oakes JM (2004) The (mis)estimation of neighborhood effects: causal inference for a practicable social epidemiology. Soc Sci Med 58(10):1929–1952CrossRefGoogle Scholar
  52. 52.
    Onnelaa J-P, Reed-Tsochas F (2010) Spontaneous emergence of social influence in online systems. Proc Natl Acad Sci 107(43):18375–18380CrossRefADSGoogle Scholar
  53. 53.
    Rubin DB (2008) For objective causal inference design trumps analysis. Ann Appl Stat 2(3):808–840MathSciNetCrossRefGoogle Scholar
  54. 54.
    Settle JE, Bond RM, Levitt J (2011) The social origins of adult political behavior. Am Polit Res 39(2):239–263CrossRefGoogle Scholar
  55. 55.
    Settle JE, Bond RM, Coviello L, Fariss CJ, Fowler JH, Jones JJ (2016) From posting to voting: the effects of political competition on online political engagement. Polit Sci Res Methods 4(2):361–378CrossRefGoogle Scholar
  56. 56.
    Shadish WR (2010) Campbell and Rubin: a primer and comparison of their approaches to causal inference in field settings. Psychol Methods 12(1):3–17CrossRefGoogle Scholar
  57. 57.
    Shadish WR, Cook TD, Campbell DT (2001) Experimental and quasi-experimental designs for generalized causal inference. Wadsworth Publishing, BelmontGoogle Scholar
  58. 58.
    Shakya HB, Hughes DA, Stafford D, Christakis NA, Fowler JH, Silverman JG (2016) Intimate partner violence norms cluster within households: an observational social network study in rural Honduras. BMC Public Health 16:233CrossRefGoogle Scholar
  59. 59.
    Shakya HB, Stafford D, Hughes DA, Keegan T, Negron R, Broome J, McKnight M, Nicoll L, Nelson J, Iriarte E, Ordonez M, Airoldi E, Fowler JH, Christakis NA (2017) Exploiting social influence to magnify population-level behaviour change in maternal and child health: study protocol for a randomised controlled trial of network targeting algorithms in rural Honduras. BMJ Open 7(3):e012996CrossRefGoogle Scholar
  60. 60.
    Shakya HB, Fariss CJ, Ojeda C, Raj A, Reed E (2017) Social network clustering of sexual violence experienced by adolescent girls. Am J Epidemiol 186:796–804CrossRefGoogle Scholar
  61. 61.
    Sinclair B, McConnell M, Green DP (2012) Detecting spillover effects: design and analysis of multilevel experiments. Am J Polit Sci 56(4):1055–1069CrossRefGoogle Scholar
  62. 62.
    Steinert-Threlkeld, ZC (2017) Spontaneous collective action: peripheral mobilization during the Arab spring. Am Polit Sci Rev 111:379–403CrossRefGoogle Scholar
  63. 63.
    Steinert-Threlkeld ZC, Mocanu D, Vespignani A, Fowler JH (2015) Online social networks and offline protest. EPJ Data Sci 4(19):1–9Google Scholar
  64. 64.
    Zeller RA, Carmines EG (1980) Measurement in the social sciences: the link between theory and data. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert M. Bond
    • 1
  • Christopher J. Fariss
    • 2
  • Jason J. Jones
    • 3
  • Jaime E. Settle
    • 4
  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.University of MichiganAnn ArborUSA
  3. 3.State University of New York, Stony BrookStony BrookUSA
  4. 4.William & MaryWilliamsburgUSA

Personalised recommendations