Measuring Social Spam and the Effect of Bots on Information Diffusion in Social Media

  • Emilio FerraraEmail author
Part of the Computational Social Sciences book series (CSS)


Bots have been playing a crucial role in online platform ecosystems, as efficient and automatic tools to generate content and diffuse information to the social media human population. In this chapter, we will discuss the role of social bots in content spreading dynamics in social media. In particular, we will first investigate some differences between diffusion dynamics of content generated by bots, as opposed to humans, in the context of political communication, then study the characteristics of bots behind the diffusion dynamics of social media spam campaigns.


  1. 1.
    Abokhodair N, Yoo D, McDonald DW (2015) Dissecting a social botnet: growth, content, and influence in twitter. In: Proceedings of the 18th ACM conference on computer-supported cooperative work and social computing. ACM, New YorkGoogle Scholar
  2. 2.
    Adamic LA, Glance N (2005) The political blogosphere and the 2004 us election: divided they blog. In: 3rd international workshop on link discovery. ACM, New York, pp 36–43Google Scholar
  3. 3.
    Ahn Y-Y, Han S, Kwak H, Moon S, Jeong H (2007) Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th international conference on world wide web. ACM, New York, pp 835–844Google Scholar
  4. 4.
    Aiello LM, Deplano M, Schifanella R, Ruffo G (2012) People are strange when you’re a stranger: impact and influence of bots on social networksGoogle Scholar
  5. 5.
    Allem J-P, Ferrara E (2016) The importance of debiasing social media data to better understand e-cigarette-related attitudes and behaviors. J Med Internet Res 18(8):e219Google Scholar
  6. 6.
    Alvisi L, Clement A, Epasto A, Lattanzi S, Panconesi A (2013) Sok: the evolution of sybil defense via social networks. In: 2013 IEEE symposium on security and privacy. IEEE, Piscataway, pp 382–396Google Scholar
  7. 7.
    Aral S, Walker D (2011) Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manag Sci 57(9):1623–1639Google Scholar
  8. 8.
    Barabasi A-L (2005) The origin of bursts and heavy tails in human dynamics. Nature 435(7039):207–211Google Scholar
  9. 9.
    Barberá P, Wang N, Bonneau R, Jost JT, Nagler J, Tucker J, González-Bailón S (2015) The critical periphery in the growth of social protests. PLoS One 10(11):e0143611Google Scholar
  10. 10.
    Bekafigo MA, McBride A (2013) Who tweets about politics? Political participation of twitter users during the 2011gubernatorial elections. Soc Sci Comp Rev 31(5)Google Scholar
  11. 11.
    Bessi A, Ferrara E (2016) Social bots distort the 2016 US presidential election online discussion. First Monday 21(11):1–14Google Scholar
  12. 12.
    Boshmaf Y, Muslukhov I, Beznosov K, Ripeanu M (2011) The socialbot network: when bots socialize for fame and money. In: Proceedings of the 27th annual computer security applications conference. ACM, New York, pp 93–102Google Scholar
  13. 13.
    Boshmaf Y, Muslukhov I, Beznosov K, Ripeanu M (2013) Design and analysis of a social botnet. Comput Netw 57(2):556–578Google Scholar
  14. 14.
    Boyd D, Crawford K (2012) Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679Google Scholar
  15. 15.
    Carlisle JE, Patton RC (2013) Is social media changing how we understand political engagement? An analysis of facebook and the 2008 presidential election. Polit Res Q 66(4):883–895Google Scholar
  16. 16.
    Catanese SA, De Meo P, Ferrara E, Fiumara G, Provetti A (2011) Crawling facebook for social network analysis purposes. In: ACM WIMS ’11: international conference on web intelligence, mining and semantics. ACM, New York, pp 52–59Google Scholar
  17. 17.
    Centola D (2011) An experimental study of homophily in the adoption of health behavior. Science 334(6060):1269–1272Google Scholar
  18. 18.
    Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the million follower fallacy. In: Fourth international AAAI conference on weblogs and social media (ICWSM 2010). AAAI Press, Palo Alto, pp 10–17Google Scholar
  19. 19.
    Chu Z, Widjaja I, Wang H (2012) Detecting social spam campaigns on twitter. In: International conference on applied cryptography and network security. Springer, Berlin, Heidelberg, pp 455–472Google Scholar
  20. 20.
    Coburn Z, Marra G (2011) Realboy: believable twitter bots.
  21. 21.
    Conover M, Ratkiewicz J, Francisco MR, Gonçalves B, Menczer F, Flammini A (2011) Political polarization on twitter. ICWSM 133:89–96Google Scholar
  22. 22.
    Conover MD, Davis C, Ferrara E, McKelvey K, Menczer F, Flammini A (2013) The geospatial characteristics of a social movement communication network. PLoS One 8(3):e55957Google Scholar
  23. 23.
    Conover MD, Ferrara E, Menczer F, Flammini A (2013) The digital evolution of occupy wall street. PLoS One 8(5):e64679Google Scholar
  24. 24.
    Davis CA, Varol O, Ferrara E, Flammini A, Menczer F (2016) Botornot: a system to evaluate social bots. In: WWW ’16 companion proceedings of the 25th international conference companion on world wide web. ACM, New York, pp 273–274Google Scholar
  25. 25.
    DiGrazia J, McKelvey K, Bollen J, Rojas F (2013) More tweets, more votes: social media as a quantitative indicator of political behavior. PLoS One 8(11):e79449Google Scholar
  26. 26.
    Effing R, Hillegersberg JV, Huibers T (2011) Social media and political participation: are facebook, twitter and youtube democratizing our political systems? In: International conference on electronic participation. Springer, Berlin, pp 25–35Google Scholar
  27. 27.
    El-Khalili S (2013) Social media as a government propaganda tool in post-revolutionary Egypt. First Monday 18(3)Google Scholar
  28. 28.
    Elovici Y, Fire M, Herzberg A, Shulman H (2013) Ethical considerations when employing fake identities in online social networks for research. Sci Eng Ethics 20:1–17Google Scholar
  29. 29.
    Elyashar A, Fire M, Kagan D, Elovici Y (2013) Homing socialbots: intrusion on a specific organization’s employee using socialbots. In: Proceedings of the 2013 international conference on advances in social networks analysis and mining. ACM, New York, pp 1358–1365Google Scholar
  30. 30.
    Ferrara E (2015) Manipulation and abuse on social media. ACM SIGWEB Newsletter (4). ACM, New YorkGoogle Scholar
  31. 31.
    Ferrara E (2017) Contagion dynamics of extremist propaganda in social networks. Inf Sci 418:1–12Google Scholar
  32. 32.
    Ferrara E (2017) Disinformation and social bot operations in the run up to the 2017 French presidential election. First Monday 22(8)Google Scholar
  33. 33.
    Ferrara E, Yang Z (2015) Measuring emotional contagion in social media. PLoS One 10(11):e0142390Google Scholar
  34. 34.
    Ferrara E, Yang Z (2015) Quantifying the effect of sentiment on information diffusion in social media. Peer J Comput Sci 1:e26Google Scholar
  35. 35.
    Ferrara E, De Meo P, Fiumara G, Baumgartner R (2014) Web data extraction, applications and techniques: a survey. Knowl-Based Syst 70:301–323Google Scholar
  36. 36.
    Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise of social bots. Commun. ACM 59(7):96–104Google Scholar
  37. 37.
    Ferrara E, Varol O, Menczer F, Flammini A (2016) Detection of promoted social media campaigns. In: 10th international AAAI conference on web and social media, pp 563–566Google Scholar
  38. 38.
    Gao H, Hu J, Wilson C, Li Z, Chen Y, Zhao BY (2010) Detecting and characterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM conference on internet measurement. ACM, New York, pp 35–47Google Scholar
  39. 39.
    Gao H, Barbier G, Goolsby R (2011) Harnessing the crowdsourcing power of social media for disaster relief. IEEE Intell Syst 26(3):10–14Google Scholar
  40. 40.
    González-Bailón S, Borge-Holthoefer J, Rivero A, Moreno Y (2011) The dynamics of protest recruitment through an online network. Sci Rep 1:197Google Scholar
  41. 41.
    González-Bailón S, Borge-Holthoefer J, Moreno Y (2013) Broadcasters and hidden influentials in online protest diffusion. Am Behav Sci 57:943–965.
  42. 42.
    Hadgu AT, Garimella K, Weber I (2013) Political hashtag hijacking in the us. In: Proceedings of the 22nd international conference on world wide web. ACM, New York, pp 55–56Google Scholar
  43. 43.
    Heymann P, Koutrika G, Garcia-Molina H (2007) Fighting spam on social web sites: a survey of approaches and future challenges. IEEE Internet Comput. 11(6):36–45Google Scholar
  44. 44.
    Howard PN (2006) New media campaigns and the managed citizen. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Howard PN, Kollanyi B (2016) Bots, #strongerin, and #brexit: computational propaganda during the uk-eu referendum. Available at SSRN 2798311Google Scholar
  46. 46.
    Hwang T, Pearce I, Nanis M (2012) Socialbots: voices from the fronts. Interactions 19(2):38–45Google Scholar
  47. 47.
    Jackson SJ, Welles BF (2015) Hijacking# mynypd: social media dissent and networked counterpublics. J Commun 65(6):932–952Google Scholar
  48. 48.
    Jagatic TN, Johnson NA, Jakobsson M, Menczer F (2007) Social phishing. Commun ACM 50(10):94–100Google Scholar
  49. 49.
    Jain N, Agarwal P, Pruthi J (2015) Hashjacker-detection and analysis of hashtag hijacking on twitter. Int J Comput Appl 114(19):17–20Google Scholar
  50. 50.
    Jin X, Lin C, Luo J, Han J (2011) A data mining-based spam detection system for social media networks. Proc VLDB Endowment 4(12):1458–1461Google Scholar
  51. 51.
    Jindal N, Liu B (2007) Review spam detection. In: Proceedings of the 16th international conference on world wide web. ACM, New York, pp 1189–1190Google Scholar
  52. 52.
    Klotz RJ (2007) Internet campaigning for grassroots and astroturf support. Soc Sci Comput Rev 25(1):3–12Google Scholar
  53. 53.
    Kollanyi B, Howard PN, Woolley SC (2016) Bots and automation over twitter during the first us presidential debate. Technical report, COMPROP Data MemoGoogle Scholar
  54. 54.
    Kramer AD, Guillory JE, Hancock JT (2014) Experimental evidence of massive-scale emotional contagion through social networks. Proc Natl Acad Sci 111(24):8788–8790Google Scholar
  55. 55.
    Kümpel AS, Karnowski V, Keyling T (2015) News sharing in social media: a review of current research on news sharing users, content, and networks. Social Media+ Society 1(2):2056305115610141Google Scholar
  56. 56.
    Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on world wide web, pp 591–600Google Scholar
  57. 57.
    Latonero M, Shklovski I (2013) Emergency management, twitter, and social media evangelism. In: Using social and information technologies for disaster and crisis management. IGI Global, Hershey, pp 196–212Google Scholar
  58. 58.
    Lazer D, Pentland AS, Adamic L, Aral S, Barabasi AL, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M et al (2009) Life in the network: the coming age of computational social science. Science (New York, NY) 323(5915):721Google Scholar
  59. 59.
    Lee K, Caverlee J, Webb S (2010) The social honeypot project: protecting online communities from spammers. In: Proceedings of the 19th international conference on world wide web. ACM, New York, pp 1139–1140Google Scholar
  60. 60.
    Lee K, Caverlee J, Webb S (2010) Uncovering social spammers: social honeypots+ machine learning. In: Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval. ACM, New York, pp 435–442Google Scholar
  61. 61.
    Lutz C, Hoffmann CP, Meckel M (2014) Beyond just politics: a systematic literature review of online participation. First Monday 19(7)Google Scholar
  62. 62.
    Lyon TP, Maxwell JW (2004) Astroturf: Interest group lobbying and corporate strategy. J Econ Manag Strateg 13(4):561–597Google Scholar
  63. 63.
    Markines B, Cattuto C, Menczer F (2009) Social spam detection. In: Proceedings of the 5th international workshop on adversarial information retrieval on the web, pp 41–48Google Scholar
  64. 64.
    Mayzlin D, Dover Y, Chevalier J (2014) Promotional reviews: an empirical investigation of online review manipulation. Am Econ Rev 104(8):2421–2455Google Scholar
  65. 65.
    Messias J, Schmidt L, Oliveira R, Benevenuto F (2013) You followed my bot! transforming robots into influential users in twitter. First Monday 18(7)Google Scholar
  66. 66.
    Metaxas PT, Mustafaraj E (2012) Social media and the elections. Science 338(6106):472–473Google Scholar
  67. 67.
    Mønsted B, Sapieżyński P, Ferrara E, Lehmann S (2017) Evidence of complex contagion of information in social media: an experiment using twitter bots. PLos One 12: e0184148Google Scholar
  68. 68.
    Morstatter F, Pfeffer J, Liu H, Carley KM (2013) Is the sample good enough? Comparing data from twitter’s streaming API with twitter’s firehose. In: 7th international AAAI conference on weblogs and social mediaGoogle Scholar
  69. 69.
    Mukherjee A, Liu B, Glance N (2012) Spotting fake reviewer groups in consumer reviews. In: Proceedings of the 21st international conference on world wide web, pp 191–200Google Scholar
  70. 70.
    Pang B, Lee L et al (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2(1–2):1–135Google Scholar
  71. 71.
    Ratkiewicz J, Conover M, Meiss M, Gonçalves B, Flammini A, Menczer F (2011) Detecting and tracking political abuse in social media. ICWSM 11:297–304Google Scholar
  72. 72.
    Ratkiewicz J, Conover M, Meiss M, Gonçalves B, Patil S, Flammini A, Menczer F (2011) Truthy: mapping the spread of astroturf in microblog streams. In: Proceedings of the 20th international conference companion on world wide web. ACM, New York, pp 249–252Google Scholar
  73. 73.
    Shorey S, Howard PN (2016) Automation, algorithms, and politics— automation, big data and politics: a research review. Int J Commun 10:24Google Scholar
  74. 74.
    Song J, Lee S, Kim J (2011) Spam filtering in twitter using sender-receiver relationship. In: International workshop on recent advances in intrusion detection, pp 301–317Google Scholar
  75. 75.
    Stein T, Chen E, Mangla K (2011) Facebook immune system. In: Proceedings of the 4th workshop on social network systems, p 8. ACM, New YorkGoogle Scholar
  76. 76.
    Stringhini G, Kruegel C, Vigna G (2010) Detecting spammers on social networks. In: Proceedings of the 26th annual computer security applications conference, p 1–9. ACM, New YorkGoogle Scholar
  77. 77.
    Subrahmanian V, Azaria A, Durst S, Kagan V, Galstyan A, Lerman K, Zhu L, Ferrara E, Flammini A, Menczer F et al (2016) The DARPA Twitter bot challenge. IEEE Comput 49(6):38–46Google Scholar
  78. 78.
    Sutton JN, Palen L, Shklovski I (2008) Backchannels on the front lines: emergency uses of social media in the 2007 Southern California wildfires. University of Colorado, BoulderGoogle Scholar
  79. 79.
    Thelwall M (2013) Heart and soul: sentiment strength detection in the social web with sentistrength. In: Proceedings of the CyberEmotions, pp 1–14Google Scholar
  80. 80.
    Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A (2010) Sentiment strength detection in short informal text. J Am Soc Inf Sci Technol 61(12):2544–2558Google Scholar
  81. 81.
    Theocharis Y, Lowe W, van Deth JW, García-Albacete G (2015) Using twitter to mobilize protest action: online mobilization patterns and action repertoires in the occupy wall street, indignados, and aganaktismenoi movements. Inf Commun Soc 18(2):202–220Google Scholar
  82. 82.
    Thomas K, Grier C, Song D, Paxson V (2011) Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM conference on internet measurement conference. ACM, New York, pp 243–258Google Scholar
  83. 83.
    Thomas K, McCoy D, Grier C, Kolcz A, Paxson V (2013) Trafficking fraudulent accounts: the role of the underground market in twitter spam and abuse. In: Usenix security, vol 13, pp 195–210Google Scholar
  84. 84.
    Varol O, Ferrara E, Ogan CL, Menczer F, Flammini A (2014) Evolution of online user behavior during a social upheaval. In: Proceedings 2014 ACM conference on web science, pp 81–90Google Scholar
  85. 85.
    Varol O, Ferrara E, Davis C, Menczer F, Flammini A (2017) Online human-bot interactions: detection, estimation, and characterization. In: International AAAI conference on web and social mediaGoogle Scholar
  86. 86.
    Varol O, Ferrara E, Menczer F, Flammini A (2017) Early detection of promoted campaigns on social media. EPJ Data Sci 6(1):13Google Scholar
  87. 87.
    Wagner CH (1982) Simpson’s paradox in real life. Am Stat 36(1):46–48Google Scholar
  88. 88.
    Wang G, Mohanlal M, Wilson C, Wang X, Metzger M, Zheng H, Zhao BY (2013) Social turing tests: crowdsourcing sybil detection. In: NDSS. The Internet Society, RestonGoogle Scholar
  89. 89.
    Yang C, Harkreader R, Zhang J, Shin S, Gu G (2012) Analyzing spammers’ social networks for fun and profit: a case study of cyber criminal ecosystem on twitter. In: Proceedings of the 21st international conference on world wide web. ACM, New York, pp 71–80CrossRefGoogle Scholar
  90. 90.
    Yang X, Chen B-C, Maity M, Ferrara E (2016) Social politics: agenda setting and political communication on social media. In: International conference on social informatics. Springer, Berlin, pp 330–344CrossRefGoogle Scholar
  91. 91.
    Yates D, Paquette S (2011) Emergency knowledge management and social media technologies: a case study of the 2010 haitian earthquake. Int J Inf Manag 31(1):6–13CrossRefGoogle Scholar
  92. 92.
    Yin J, Lampert A, Cameron M, Robinson B, Power R (2012) Using social media to enhance emergency situation awareness. IEEE Intell Syst 27(6):52–59CrossRefGoogle Scholar
  93. 93.
    Zangerle E, Specht G (2014) “Sorry, I was hacked” a classification of compromised twitter accounts. In: SAC: the 29th symposium on applied computingGoogle Scholar
  94. 94.
    Zhang X, Zhu S, Liang W (2012) Detecting spam and promoting campaigns in the twitter social network. In: IEEE 12th international conference on data mining (ICDM), 2012. IEEE, Piscataway, pp 1194–1199CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Southern CaliforniaInformation Sciences InstituteLos AngelesUSA

Personalised recommendations