Advertisement

Scalable Detection of Viral Memes from Diffusion Patterns

  • Pik-Mai Hui
  • Lilian Weng
  • Alireza Sahami Shirazi
  • Yong-Yeol Ahn
  • Filippo Menczer
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

Social media and social networking platforms have flourished with the rapid development of mobile technology and the ubiquitous use of the Internet. As a result, memes, or pieces of information spreading from person to person, can be reshared among users quickly and gain huge popularity. As viral memes have tremendous social and economic impact, detecting these viral memes at their early stages of spread is a worthy, yet challenging problem. Here we review the literature on predicting viral memes, and present empirical results from Twitter and Tumblr datasets. We demonstrate how diffusion patterns of memes, in the context of network communities, play an important role in predicting virality. We show that it is feasible to obtain predictive features based on community structure even at the massive scales that common social media services need to process. Our results may not only enable practitioners to make predictions about meme diffusion, but also help researchers understand how and why different factors, in particular diffusion patterns in communities, affect online virality.

References

  1. 1.
    Dawkins R (1989) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Daley DJ, Kendall DG (1964) Epidemics and rumours. Nature 204(4963):1118ADSCrossRefGoogle Scholar
  3. 3.
    Goffman W, Newill VA (1964) Generalization of epidemic theory: an application to the transmission of ideas. Nature 204:225–228ADSCrossRefGoogle Scholar
  4. 4.
    Weng L, Menczer F, Ahn Y-Y (2013) Virality prediction and community structure in social networks. Sci Rep 3:2522Google Scholar
  5. 5.
    Weng L, Menczer F, Ahn Y-Y (2014) Predicting successful memes using network and community structure. In: Proceedings of eighth international AAAI conference on weblogs and social media (ICWSM)Google Scholar
  6. 6.
    Cheng J, Adamic L, Dow A, Kleinberg J, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the international world-wide web conference (WWW)Google Scholar
  7. 7.
    Jamali S, Rangwala H (2009) Digging digg: comment mining, popularity prediction, and social network analysis. In: Proceedings of the international conference on web information systems and mining (WISM), pp 32–38Google Scholar
  8. 8.
    Asur S, Huberman BA, Szabo G, Wang C (2011) Trends in social media: persistence and decay. In: Proceedings of the international conference on weblogs and social media (ICWSM)Google Scholar
  9. 9.
    Yang J, Leskovec J (2011), Patterns of temporal variation in online media. In: Proceedings of the ACM international conference on web search and data mining (WSDM), pp 177–186Google Scholar
  10. 10.
    Nikolov S (2012), Trend or no trend: a novel nonparametric method for classifying time series. Technical report. MIT, CambridgeGoogle Scholar
  11. 11.
    Berger J, Milkman KL (2009), What makes online content viral? J Market Res 49(2):192–205Google Scholar
  12. 12.
    Guerini M, Strapparava C, Özbal G (2011) Exploring text virality in social networks. In: Proceedings of the AAAI international conference on weblogs and social media (ICWSM), pp 506–509Google Scholar
  13. 13.
    Weng L, Flammini A, Vespignani A, Menczer F (2012) Competition among memes in a world with limited attention. Sci Rep 2:335Google Scholar
  14. 14.
    Salganik M, Dodds P, Watts D (2006) Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762):854–856ADSCrossRefGoogle Scholar
  15. 15.
    Muchnik L, Aral S, Taylor SJ (2013) Social influence bias: a randomized experiment. Science 341(6146):647–651ADSCrossRefGoogle Scholar
  16. 16.
    Yang L, Sun T, Mei Q (2012) We know what @you #tag: does the dual role affect hashtag adoption? In: Proceedings of the international world-wide web conference (WWW), pp 261–270Google Scholar
  17. 17.
    Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the million follower fallacy. In: Proceedings of the international AAAI conference on weblogs and social media (ICWSM), pp 10–17Google Scholar
  18. 18.
    Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: Proceedings of the IEEE international conference on social computing, pp 177–184Google Scholar
  19. 19.
    Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: Proceedings of the ACM international conference on knowledge discovery and data mining (KDD)Google Scholar
  20. 20.
    Weng J, Lim E-P, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the ACM international conference on web search and data mining (WSDM)Google Scholar
  21. 21.
    Weng L, Menczer F (2015). Topicality and impact in social media: diverse messages, focused messengers. PLoS One 10(2):e0118410CrossRefGoogle Scholar
  22. 22.
    Romero DM, Galuba W, Asur S, Huberman BA (2011) Influence and passivity in social media. In: Proceedings of the international world wide web conference (Companion Volume), pp 113–114Google Scholar
  23. 23.
    Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893ADSCrossRefGoogle Scholar
  24. 24.
    Bakshy E, Mason WA, Hofman JM, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the ACM international conference on web search and data mining (WSDM), pp 65–74Google Scholar
  25. 25.
    Brown J, Reingen P (1987) Social ties and word-of-mouth referral behavior. J Consum Res 14(3):350–362CrossRefGoogle Scholar
  26. 26.
    Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380CrossRefGoogle Scholar
  27. 27.
    Leskovec J, Adamic L, Huberman B (2007). The dynamics of viral marketing. ACM Trans Web 1(1):1–39CrossRefGoogle Scholar
  28. 28.
    Mason WA, Jones A, Goldstone RL (2008) Propagation of innovations in networked groups. J Exp Psychol Gen 137(3):422Google Scholar
  29. 29.
    Aral S, Walker D (2011) Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manag Sci 57(9):1623–1639CrossRefGoogle Scholar
  30. 30.
    Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203ADSCrossRefGoogle Scholar
  31. 31.
    DJ Watts (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771Google Scholar
  32. 32.
    Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582ADSCrossRefGoogle Scholar
  33. 33.
    Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123ADSCrossRefGoogle Scholar
  34. 34.
    Ahn Y-Y, Bagrow J, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764ADSCrossRefGoogle Scholar
  35. 35.
    Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Nematzadeh A, Ferrara E, Flammini A, Ahn Y-Y (2014) Optimal network modularity for information diffusion. Phys Rev Lett 113(8):088701Google Scholar
  37. 37.
    Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443CrossRefGoogle Scholar
  38. 38.
    Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186CrossRefGoogle Scholar
  39. 39.
    Centola D, Macy M (2007) Complex contagions and the weakness of long ties 1. Am J Sociol 113(3):702–734CrossRefGoogle Scholar
  40. 40.
    Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197ADSCrossRefGoogle Scholar
  41. 41.
    Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Conover MD, Ferrara E, Menczer F, Flammini A (2013) The digital evolution of occupy wall street. PLoS One 8(3):e55957ADSCrossRefGoogle Scholar
  43. 43.
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008CrossRefGoogle Scholar
  44. 44.
    Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36–41ADSCrossRefGoogle Scholar
  45. 45.
    Sotera. Spark-distributed-louvain-modularity. https://github.com/Sotera/spark-distributed-louvain-modularity
  46. 46.
    Bae S-H, Halperin D, West J, Rosvall M, Howe B (2013) Scalable flow-based community detection for large-scale network analysis. In: IEEE 13th international conference on Data mining workshops (ICDMW), 2013. IEEE, Piscataway, pp 303–310Google Scholar
  47. 47.
    Bakshy E, Karrer B, Adamic L (2009) Social influence and the diffusion of user-created content. In: Proceedings of the ACM conference on electronic commerce, pp 325–334Google Scholar
  48. 48.
    Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the international world-wide web conference (WWW)Google Scholar
  49. 49.
    Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197ADSCrossRefGoogle Scholar
  50. 50.
    McPherson M, Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27(1):415–444CrossRefGoogle Scholar
  51. 51.
    Centola D (2011) An experimental study of homophily in the adoption of health behavior. Science 334(6060):1269–1272ADSCrossRefGoogle Scholar
  52. 52.
    Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on digg and twitter social networks. In: Proceedings of the international AAAI conference on weblogs and social media (ICWSM), pp 90–97Google Scholar
  53. 53.
    Lancichinetti A, Fortunato S (2012) Consensus clustering in complex networks. Sci Rep 2:336ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pik-Mai Hui
    • 1
  • Lilian Weng
    • 1
  • Alireza Sahami Shirazi
    • 2
  • Yong-Yeol Ahn
    • 1
  • Filippo Menczer
    • 1
  1. 1.Center for Complex Networks and Systems Research, School of Informatics and ComputingIndiana UniversityBloomingtonUSA
  2. 2.Yahoo!SunnyvaleUSA

Personalised recommendations