Misinformation Spreading on Facebook

  • Fabiana Zollo
  • Walter QuattrociocchiEmail author
Part of the Computational Social Sciences book series (CSS)


Social media are pervaded by unsubstantiated or untruthful rumors, that contribute to the alarming phenomenon of misinformation. The widespread presence of a heterogeneous mass of information sources may affect the mechanisms behind the formation of public opinion. Such a scenario is a florid environment for digital wildfires when combined with functional illiteracy, information overload, and confirmation bias. In this essay, we focus on a collection of works aiming at providing quantitative evidence about the cognitive determinants behind misinformation and rumor spreading. We account for users’ behavior with respect to two distinct narratives: (a) conspiracy and (b) scientific information sources. In particular, we analyze Facebook data on a time span of 5 years in both the Italian and the US context, and measure users’ response to (1) information consistent with one’s narrative, (2) troll contents, and (3) dissenting information e.g., debunking attempts. Our findings suggest that users tend to (a) join polarized communities sharing a common narrative (echo chambers), (b) acquire information confirming their beliefs (confirmation bias) even if containing false claims, and (c) ignore dissenting information.



This work is based on co-authored material. We thank Aris Anagnostopoulos, Alessandro Bessi, Guido Caldarelli, Michela Del Vicario, Shlomo Havlin, Igor Mozetič, Petra Kralj Novak, Fabio Petroni, Antonio Scala, Louis Shekhtman, H. Eugene Stanley, and Brian Uzzi.


  1. 1.
    Adamic LA, Glance N (2005) The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd international workshop on Link discovery. Association for Computing Machinery, New York, pp 36–43Google Scholar
  2. 2.
    Adar E, Zhang L, Adamic LA (2004) Lukose RM: implicit structure and the dynamics of blogspace. In: Workshop on the weblogging ecosystem, vol 13, pp 16989–16995Google Scholar
  3. 3.
    Aikin SF (2013) Poe’s law, group polarization, and argumentative failure in religious and political discourse. Soc Semiot 23(3):301–317CrossRefGoogle Scholar
  4. 4.
    Akerlof GA, Yellen JL, Katz ML (1996) An analysis of out-of-wedlock childbearing in the United States. Q J Econ 111:277–317CrossRefGoogle Scholar
  5. 5.
    AlMansour AA, Brankovic L, Iliopoulos CS (2014) A model for recalibrating credibility in different contexts and languages-a twitter case study. Int J Digit Inf Wirel Commun 4(1): 53–62CrossRefGoogle Scholar
  6. 6.
    Aral S, Muchnik L, Sundararajan A (2009) Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc Natl Acad Sci 106(51):21544–21549ADSCrossRefGoogle Scholar
  7. 7.
    Asch SE (1955) Opinions and social pressure. Readings About Soc Anim 193:17–26ADSCrossRefGoogle Scholar
  8. 8.
    Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on Twitter. In: Proceedings of the fourth ACM international conference on web search and data mining. Association for Computing Machinery, New York, pp 65–74Google Scholar
  9. 9.
    Bakshy E, Messing S, Adamic LA (2015) Exposure to ideologically diverse news and opinion on facebook. Science 348(6239):1130–1132ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bessi A, Coletto M, Davidescu GA, Scala A, Caldarelli G, Quattrociocchi W (2015) Science vs conspiracy: collective narratives in the age of misinformation. PLoS One 10(2):e0118,093CrossRefGoogle Scholar
  11. 11.
    Bessi A, Petroni F, Del Vicario M, Zollo F, Anagnostopoulos A, Scala A, Caldarelli G, Quattrociocchi W (2015) Viral misinformation: the role of homophily and polarization. In: Proceedings of the 24th international conference on world wide web. Association for Computing Machinery, New York, pp 355–356Google Scholar
  12. 12.
    Bessi A, Petroni F, Del Vicario M, Zollo F, Anagnostopoulos A, Scala A, Caldarelli G, Quattrociocchi W (2016) Homophily and polarization in the age of misinformation. Eur Phys J Spec Top 225(10):2047–2059ADSCrossRefGoogle Scholar
  13. 13.
    Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197ADSCrossRefGoogle Scholar
  14. 14.
    Centre WHOM (2014) Ebola: Experimental therapies and rumoured remedies. Situation Assessment (2014).
  15. 15.
    Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the 23rd international conference on world wide web. International World Wide Web Conferences Steering Committee, Canton of Geneva, pp 925–936Google Scholar
  16. 16.
    Ciampaglia GL, Shiralkar P, Rocha LM, Bollen J, Menczer F, Flammini A (2015) Computational fact checking from knowledge networks. PLoS One 10(6):e0128193CrossRefGoogle Scholar
  17. 17.
    Conover M, Ratkiewicz J, Francisco MR, Gonçalves B, Menczer F, Flammini A (2011) Political polarization on twitter. ICWSM 133:89–96Google Scholar
  18. 18.
    Conover MD, Goncalves B, Ratkiewicz J, Flammini A, Menczer F (2011) Predicting the political alignment of twitter users. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing, pp 192–199.
  19. 19.
    Del Vicario M, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) The spreading of misinformation online. Proc Natl Acad Sci 113(3):554–559Google Scholar
  20. 20.
    Dong XL, Gabrilovich E, Murphy K, Dang V, Horn W, Lugaresi C, Sun S, Zhang W (2015) Knowledge-based trust: estimating the trustworthiness of web sources. Proc VLDB Endowment 8(9):938–949CrossRefGoogle Scholar
  21. 21.
    Dow PA, Adamic LA, Friggeri A (2013) The anatomy of large Facebook cascades. In: ICWSMGoogle Scholar
  22. 22.
    Ellison NB, Steinfield C, Lampe C (2007) The benefits of facebook “friends:” social capital and college students’ use of online social network sites. J Comput-Mediat Commun 12(4): 1143–1168CrossRefGoogle Scholar
  23. 23.
    Erich O, Udi W: News feed fyi: Showing fewer hoaxes (2015).
  24. 24.
    Facebook: Using the graph api. Website (2017). Last checked: 24.02.2017
  25. 25.
    Gupta A, Kumaraguru P, Castillo C, Meier P (2014) Tweetcred: real-time credibility assessment of content on twitter. In: Social informatics. Springer, Berlin, pp 228–243.Google Scholar
  26. 26.
    Howell WL (2013) Digital wildfires in a hyperconnected world. Tech. Rep. Global Risks 2013, World Economic ForumGoogle Scholar
  27. 27.
    Jenni Sargent MD (2017) First draft coalition. Website.
  28. 28.
    Kahan DM (1997) Social influence, social meaning, and deterrence. Virginia Law Rev 83: 349–395CrossRefGoogle Scholar
  29. 29.
    Katz E, Lazarsfeld PF (1970) Personal influence, the part played by people in the flow of mass communications. Transaction Publishers, New BrunswickGoogle Scholar
  30. 30.
    Knobloch-Westerwick S (2012) Selective exposure and reinforcement of attitudes and partisanship before a presidential election. J Commun 62(4):628–642CrossRefGoogle Scholar
  31. 31.
    Kuklinski JH, Quirk PJ, Jerit J, Schwieder D, Rich RF (2000) Misinformation and the currency of democratic citizenship. J Polit 62(3):790–816CrossRefGoogle Scholar
  32. 32.
    Lazarsfeld PF, Berelson B, Gaudet H (1968) The peoples choice: how the voter makes up his mind in a presidential campaign. Columbia University Press, New YorkGoogle Scholar
  33. 33.
    Lazer D, Pentland AS, Adamic L, Aral S, Barabasi AL, Brewer D, Christakis N, Contractor N, Fowler J, Gutmann M, et al (2009) Life in the network: the coming age of computational social science. Science (New York, NY) 323(5915):721Google Scholar
  34. 34.
    Lessig L (2009) Code: and other laws of cyberspace.
  35. 35.
    Levy P (1999) Collective intelligence: Mankind’s emerging world in cyberspace. Perseus Publishing, CambridgeGoogle Scholar
  36. 36.
    McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: Homophily in social networks. Annu Rev Sociol 27:415–444CrossRefGoogle Scholar
  37. 37.
    Moore JP (2009) The dangers of denying HIV. Nature 459(7244):168–168ADSCrossRefGoogle Scholar
  38. 38.
    Nickerson RS (1998) Confirmation bias: a ubiquitous phenomenon in many guises. Rev Gen Psychol 2(2):175CrossRefGoogle Scholar
  39. 39.
    Nyhan B, Reifler J (2010) When corrections fail: the persistence of political misperceptions. Polit Behav 32(2):303–330CrossRefGoogle Scholar
  40. 40.
    Pariser E (2011) The filter bubble: what the Internet is hiding from you. Penguin, LondonGoogle Scholar
  41. 41.
    Peto R, Peto J (1972) Asymptotically efficient rank invariant test procedures. J R Stat Soc Ser A 135:185–207CrossRefGoogle Scholar
  42. 42.
    Qazvinian V, Rosengren E, Radev DR, Mei Q (2011) Rumor has it: identifying misinformation in microblogs. In: Proceedings of the conference on empirical methods in natural language processing. Association for Computational Linguistics, New Brunswick, pp 1589–1599Google Scholar
  43. 43.
    Ratkiewicz J, Conover M, Meiss M, Gonçalves B, Flammini A, Menczer F (2011) Detecting and tracking political abuse in social media. In: ICWSMGoogle Scholar
  44. 44.
    Resnick P, Carton S, Park S, Shen Y, Zeffer N (2014) Rumorlens: a system for analyzing the impact of rumors and corrections in social media. In: Proceedings of the computational journalism conferenceGoogle Scholar
  45. 45.
    Stoner JA (1968) Risky and cautious shifts in group decisions: the influence of widely held values. J Exp Soc Psychol 4(4):442–459CrossRefGoogle Scholar
  46. 46.
    Sunstein CR (2002) The law of group polarization. J Polit Philos 10(2):175–195CrossRefGoogle Scholar
  47. 47.
    Sunstein CR (2009) 2.0. Princeton University Press, Princeton, NJGoogle Scholar
  48. 48.
    Ugander J, Backstrom L, Marlow C, Kleinberg J (2012) Structural diversity in social contagion. Proc Natl Acad Sci 109(16):5962–5966ADSCrossRefGoogle Scholar
  49. 49.
    Watts DJ, Dodds PS (2007) Influentials, networks, and public opinion formation. J Consum Res 34(4):441–458CrossRefGoogle Scholar
  50. 50.
    Zollo F, Bessi A, Del Vicario M, Scala A, Caldarelli G, Shekhtman L, Havlin S, Quattrociocchi W (2015) Debunking in a world of tribes. arXiv preprint arXiv:1510.04267Google Scholar
  51. 51.
    Zollo F, Novak PK, Del Vicario M, Bessi A, Mozetič I, Scala A, Caldarelli G, Quattrociocchi W (2015) Emotional dynamics in the age of misinformation. PLoS One 10(9):e0138740CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ca’ Foscari University of VeniceVeniceItaly
  2. 2.IMT School for Advanced StudiesLuccaItaly

Personalised recommendations