Closing Remarks

  • Hermann Janeschitz-Kriegl


The field of polymer crystallization is an old field and, as such, a rather extended one. As a consequence, no one can be competent in all aspects. This certainly is the reason, why one can still feel like a newcomer, even if one has entered the field already 30 years ago for an investigation of structure formation during processing of semi-crystalline polymers. Previously, the author had been engaged in several other areas of polymer science, as there were: regenerated cellulose, flow birefringence of polymers in solution, single screw extrusion and polymer melt rheology (heat transfer and flow, inauguration of the flow birefringence of polymer melts). This information must serve as an excuse, if some contributions in the field of polymer crystallization may have been overlooked.


  1. 1.
    Chen Q, Fan Y, Zheng Q (2006) Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene. Rheol Acta 46:305–316CrossRefGoogle Scholar
  2. 2.
    Al-Hussein M, Strobl G (2002) The melting line, the crystallization line and the equilibrium melting temperature of isotactic polystyrene. Macromolecules 35:1672–1676CrossRefGoogle Scholar
  3. 3.
    Tribout C, Monasse B, Haudin JM (1996) Experimental study of shear-induced crystallization of an impact polypropylene copolymer. Colloid Polym Sci 274:197–208CrossRefGoogle Scholar
  4. 4.
    Magill JH (1967) Crystallization of poly (tetra-p-silphenylene) siloxane J Polym Sci A-2, 5:89–99Google Scholar
  5. 5.
    Haudin JM, Duplay C, Monasse B, Costa JL (2002) Shear induced crystallization of polypropylene. Growth enhancement and rheology in crystallization range. Macromol Symp 185:119–133CrossRefGoogle Scholar
  6. 6.
    Becker R, Döring W (1935, in German) Kinetic treatment of the formation of nuclei in over-saturated steam. Ann Phys 5(24):719–752Google Scholar
  7. 7.
    Olsen AP, Flagan RC, Kornfield JA (2006) Manipulation of athermal nuclei in aqueous poly (ethylene oxide) by scanning activity gravimetric analysis. MacromoleculesGoogle Scholar
  8. 8.
    Strobl G (2000) From the melt via mesomorphic and granular layers to lamellar crystallites: a major route followed in polymer crystallization? Eur Phys J E 3:165–183CrossRefGoogle Scholar
  9. 9.
    Lotz B (2000) What can polymer crystal structure tell about polymer crystallization processes? Eur Phys J E 3:185–194CrossRefGoogle Scholar
  10. 10.
    Ziabicki A (1996) Crystallization of polymers in variable external conditions. 1. General equations. Colloid Polym Sci 274:209–217CrossRefGoogle Scholar
  11. 11.
    Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73CrossRefGoogle Scholar
  12. 12.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Netherlands, pp 594–603Google Scholar
  13. 13.
    Malkin AYa, Beghishev VP, Keapin IA, Andreyanova ZS (1984) General treatment of polymer crystallization kinetics—Part 2: the kinetics of nonisothermal crystallization. Polym Eng Sci 24:1402–1408Google Scholar
  14. 14.
    Magill JH (1962) A new technique for following rapid rates of crystallization, II isotactic polypropylene. Polymer 3:35–42CrossRefGoogle Scholar
  15. 15.
    Janeschitz-Kriegl H, Wimberger-Friedl R, Krobath G, Liedauer S (1987, in German) On the formation of layer structures in plastic parts. Kautschuk + Gummi, Kunststoffe 40:301–307Google Scholar
  16. 16.
    Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Polym Sci 80:1–7. Janeschitz-Kriegl H, Eder G (2007) Same title: A recollection. J Macromol Sci Part B 46:1–11Google Scholar
  17. 17.
    Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Progr Polym Sci 15:629–714CrossRefGoogle Scholar
  18. 18.
    Eder G, Janeschitz-Kriegl H (1997) Processing of polymers 5: crystallization. Mat Sci Techn 18:269–342Google Scholar
  19. 19.
    Wippel H (1989) Further investigations concerning shear induced crystallization of isotactic polypropylene, diploma thesis, Linz University, see also Fig. 2.20 (in German)Google Scholar
  20. 20.
    Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728CrossRefGoogle Scholar
  21. 21.
    Peters GWM, Swartjes FHM, Meijer HEH (2002) A recoverable strain-based model for flow-induced crystallization. Macromol Symp 185:277–292CrossRefGoogle Scholar
  22. 22.
    Van Meerveld J, Peters GWM, Hütter M (2004) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta 44:119–134CrossRefGoogle Scholar
  23. 23.
    Coppola S, Balzano L, Gioffredi E, Maffettone PL, Grizzuti N (2004) Effects of the degree of undercooling on flow induced crystallization in polymer melts. Polymer 45:3249–3256CrossRefGoogle Scholar
  24. 24.
    Janeschitz-Kriegl H, Ratajski E, Eder G (2014) Unlimited shear as a source of information in polymer melt processing. Int Polym Proc 29:402–411CrossRefGoogle Scholar
  25. 25.
    D`Haese M, Van Puyvelde P, Langouche F (2010) Effect of particles on the flow-induced crystallization of polypropylene at processing speeds. Macromolecules 43:2933–2941Google Scholar
  26. 26.
    Li L, de Jeu WH (2003) Shear-induced ordering as a precursor of crystallization in isotactic polypropylene. Macromolecules 36:4862–4867CrossRefGoogle Scholar
  27. 27.
    Zuidema HG, Peters GWM, Meijer HEH (2001) Development and validation of recoverable strain based model for flow-induced crystallization of polymers. Macromol Theory Simul 10:447–460CrossRefGoogle Scholar
  28. 28.
    Elmoumni A, Winter HH (2006) Large strain requirements for shear-induced crystallization of isotactic polypropylene. Rheol Acta 45:793–801CrossRefGoogle Scholar
  29. 29.
    Pogodina NV, Lavrenko VP, Srinivas S, Winter HH (2004) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer 42:9031–9043CrossRefGoogle Scholar
  30. 30.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  31. 31.
    Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E (2004) New extensional rheometer for creep flow at high tensile stress. Part II. Flow induced nucleation for the crystallization of PP. J Rheol 48:631–639CrossRefGoogle Scholar
  32. 32.
    Kumaraswamy G, Kornfield JA, Yeh F, Hsiao B (2002) Shear-enhanced crystallization in isotactic polypropylene. 3. Evidence for a kinetic pathway of nucleation. Macromolecules 35:1762–1769CrossRefGoogle Scholar
  33. 33.
    Braun J, Wippel H, Eder G, Janeschitz-Kriegl H (2003) Industrial solidification processes in polybutene-1. Part II—Influence of shear flow. Polym Eng Sci 43:188–203CrossRefGoogle Scholar
  34. 34.
    Hadinata C, Gabriel C, Ruellmann M, Laun HM (2005) Comparison of shear-induced crystallization behavior of PB-1 samples with different molecular weight distribution. J Rheol 49:327–349CrossRefGoogle Scholar
  35. 35.
    Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364CrossRefGoogle Scholar
  36. 36.
    Binsbergen FL (1970) Heterogeneous nucleation in the crystallization of polyolefins: Part I chemical and physical nature of nucleation agents. Polymer 11:253–267CrossRefGoogle Scholar
  37. 37.
    Balzano L (2008) Flow Induced Crystallization of Polyolefins. Doctoral Thesis Eindhoven University of TechnologyGoogle Scholar
  38. 38.
    Thierry A, Fillon B, Straupé C, Lotz B, Wittmann JC (1992) Polymer nucleation agents: efficiency scale and impact of physical gelation. Progr Colloid Polym Sci 87:28–31CrossRefGoogle Scholar
  39. 39.
    Alcazar D, Ruan J, Thierry A, Lotz B (2006) Structural matching between the polymeric nucleating agent isotactic poly(vinylcyclohexane) and isotactic polypropylene. Macromolecules 39:2832–2840CrossRefGoogle Scholar
  40. 40.
    Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW (2003) The binary system isotactic polypropylene/bis (3, 4-dimethyl benzylidene) sorbitol: phase behavior, nucleation and optical properties. Macromolecules 36:5150–5156CrossRefGoogle Scholar
  41. 41.
    Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleation agents in shear induced crystallization of isotactic polypropylene. Intern Polym Proc 12:72–77CrossRefGoogle Scholar
  42. 42.
    Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-weeks extrapolation. Macromolecules 31:8219–8229CrossRefGoogle Scholar
  43. 43.
    Haas TW, Maxwell B (1969) Effects of shear stress on the crystallization of linear polyethylene and polybutene-1. Polym Eng Sci 9:225–241CrossRefGoogle Scholar
  44. 44.
    Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of non-isothermal crystallization of polymers. I relationship between crystallization temperature, crystallinity and cooling conditions. J Appl Polym Sci 16:1077–1091CrossRefGoogle Scholar
  45. 45.
    Spruiell JE, White JL (1975) Structure development during the melt spinning of fibers. Appl Polym Symp 27:121–157Google Scholar
  46. 46.
    Kohler WH, McHugh AJ (2007) 2D modeling of high-speed fiber spinning with flow-enhanced crystallization. J Rheol 51:721–733CrossRefGoogle Scholar
  47. 47.
    Tanner RI (2003) On the flow of crystallizing polymers I. Linear regime. J Non-Newton Fluid Mech 112:251–268CrossRefGoogle Scholar
  48. 48.
    Wassner E, Maier RD (2000) Shear-induced crystallization of polypropylene melts. In: Binding DM, et al (eds) Proceedings of the XIII International Congress on Rheology, Cambridge, pp 183–185Google Scholar
  49. 49.
    White JL, Cakmak M (1986) Orientation development and crystallization in melt spinning of fibers. Adv Polym Technol 6:295–338CrossRefGoogle Scholar
  50. 50.
    Devaux N, Monasse B, Haudin JM, Moldenaers P, Vermant J (2004) Rheological study of flow enhanced crystallization in isotactic polypropylene. Rheol Acta 43:210–222CrossRefGoogle Scholar
  51. 51.
    Stein RS, Wilson PR (1962) Scattering of light by polymer films possessing correlated orientation functions. J Appl Phys 33:1914–1922CrossRefGoogle Scholar
  52. 52.
    Mackley MR, Wannaborworn S, Gao P, Zhan F (1999) The optical microscopy of sheared liquids using a newly developed optical stage. J Microsc Anal 69:25–27Google Scholar
  53. 53.
    Janeschitz-Kriegl H (2006) Phases of flow-induced crystallization of iPP: how remote pieces of the puzzle appear to fit. Macromolecules 39:4448–4454CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations