Advertisement

Required Basic Achievements

  • Hermann Janeschitz-Kriegl
Chapter

Abstract

It is evident that the three transport phenomena, which are mentioned in the title of this section, are involved in structure formation during processing. In particular, flow is always engaged in mold filling. In one respect flow causes macroscopic heat and momentum transport. But it has also an enormous influence on the crystallization kinetics. Actually, crystallization is the consequence of transport on a micro-scale. It is rendered possible by rearrangements of molecules. However, these rearrangements are favored by flow. This seems obvious. But nobody would have expected that the influence of flow should be so tremendous.

References

  1. 1.
    Tribout C, Monasse B, Haudin JM (1996) Experimental study of shear-induced crystallization of an impact polypropylene copolymer. Colloid Polym Sci 274:197–208CrossRefGoogle Scholar
  2. 2.
    Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364CrossRefGoogle Scholar
  3. 3.
    Stadlbauer M, Janeschitz-Kriegl H, Eder G, Ratajski E (2004) New extensional rheometer for creep flow at high tensile stress, part II. Flow induced nucleation for the crystallization of iPP. J Rheol 48:631–639CrossRefGoogle Scholar
  4. 4.
    Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and non-linear Hoffman-Weeks extrapolation. Macromolecules 31:8219–8229CrossRefGoogle Scholar
  5. 5.
    Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin, pp 181–187, p 424Google Scholar
  6. 6.
    Smoluchowsky M (1916, in German) An attempt of a mathematical theory of the kinetics of coagulation in colloidal solusions. Z phys Chemie XCII:129–168Google Scholar
  7. 7.
    Ratajski E, Janeschitz-Kriegl H (1996) How to determine high growth speeds in polymer crystallization. Colloid Polym Sci 274:938–951CrossRefGoogle Scholar
  8. 8.
    Gandica A, Magill JH (1972) A universal relationship for the crystallization kinetics of polymeric materials. Polymer 13:595–596CrossRefGoogle Scholar
  9. 9.
    Janeschitz-Kriegl H, Eder G, Stadlbauer M, Ratajski E (2005, in English) A thermodynamic frame for the kinetics of polymer crystallization under process conditions. Monatshefte für Chemie 136:1119–1137Google Scholar
  10. 10.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, Oxford, New York, Tokyo, p 120Google Scholar
  11. 11.
    Woodward AE (1989) Atlas of polymer morphology. Hanser Publishers, Munich, Vienna, New York, p 106–109Google Scholar
  12. 12.
    Prime RB, Wunderlich B, Melillo L (1969) Extended chain crystals V. Thermal analysis and electron microscopy of the melting process in polyethylene. J Polym Sci A-2 7:2091–2097Google Scholar
  13. 13.
    Keller A (1957) Single crystals in polymers: evidence of folded-chain configuration. Philos Mag 2:1171–1175CrossRefGoogle Scholar
  14. 14.
    Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212CrossRefGoogle Scholar
  15. 15.
    Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Colloid Polym Sci 80:1–7CrossRefGoogle Scholar
  16. 16.
    Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728CrossRefGoogle Scholar
  17. 17.
    Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. Polym Lett 4:481–486CrossRefGoogle Scholar
  18. 18.
    Kolmogoroff AN (1937, in Russian) On the statistical theory of the crystallization of metals. Bull Acad Nauk SSSR Math Ser 1:355–359Google Scholar
  19. 19.
    Avrami M (1939–1941) Kinetics of phase change I, II, III. J Chem Phys 6:1103–1112, 8:212–224, 9:177–184Google Scholar
  20. 20.
    Evans VB (1945) The laws of expanding circles and spheres in relation to the lateral growth rate of surface films and grain size of metals. Trans Faraday Soc 41:365–374CrossRefGoogle Scholar
  21. 21.
    Tobin MC (1974, 1976) Theory of phase transition with growth site impingement I, II. J Polym Sci Phys Ed 12:399–406, 14:2253–2257Google Scholar
  22. 22.
    Eder G, Janeschitz-Kriegl H (1997) Processing of polymers: crystallization. Mat Sci Tech (VCH-Wiley) 18:269–342Google Scholar
  23. 23.
    Wunderlich B (1973) Macromolecular physics, vol 1, p 282. Academic Press, New York, LondonGoogle Scholar
  24. 24.
    Eder G (1997) The role of heat transfer problems in standard crystallization experiments. ASME Int HTD 351:131–137Google Scholar
  25. 25.
    Nakamura K, Watanabe T, Katayama K, Amano T (1972) Some aspects of non-isothermal crystallization of polymers. I relationship between crystallization temperature, crystallinity and cooling conditions. J Appl Polym Sci 16:1077–1091CrossRefGoogle Scholar
  26. 26.
    Schneider W, Köppl A, Berger J (1988) Non-isothermal crystallization of polymers. Intern Polym Proc 2:151–154CrossRefGoogle Scholar
  27. 27.
    Van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294Google Scholar
  28. 28.
    Eder G (1998) Crystallization in polymer processing: modelling and experimentation. In: Alkeryd L et al (eds) Progress of industrial mathematics at ECMI 98. Teubner, Stuttgart, Leipzig 1999, p 138Google Scholar
  29. 29.
    Janeschitz-Kriegl H, Eder G (1984) A less familiar feature of crystalline layer growth on a cold surface. Plast Rubber Process Appl 4:145–148Google Scholar
  30. 30.
    Astarita G, Kenny JM (1987) The Stefan and Deborah numbers in polymer crystallization. Chem Eng Commun 53:69–110CrossRefGoogle Scholar
  31. 31.
    Janeschitz-Kriegl H, Eder G, Ratajski E (2006) A process classification number for the solidification of crystallizing materials. Intern Polym Proc 21:521–526CrossRefGoogle Scholar
  32. 32.
    Van Antwerpen F, Van Krevelen DW (1972) Influence of crystallization temperature, molecular weight and additives on the crystallization kinetics of poly(ethylene terephthalate). J Polym Sci Polym Phys Ed 10:2423–2435Google Scholar
  33. 33.
    Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RI, Van der Vegte EW (2002) High-speed calorimetry for the study of the kinetics of (de)vitrification, crystallization and melting of macromolecules. Macromolecules 35:3601–3613CrossRefGoogle Scholar
  34. 34.
    Janeschitz-Kriegl H, Wippel H, Paulik Ch, Eder G (1993) Polymer crystallization dynamics, as reflected by differential scanning calorimetry. Part I: on the calibration of the apparatus. Colloid Polym Sci 271:1107–1115CrossRefGoogle Scholar
  35. 35.
    Wu CH, Eder G, Janeschitz-Kriegl H (1993) Polymer crystallization dynamics, as reflected by differential scanning calorimetry. Part II: numerical simulations. Colloid Polym Sci 271:1116–1126CrossRefGoogle Scholar
  36. 36.
    Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Progr Polym Sci 15:629–714CrossRefGoogle Scholar
  37. 37.
    Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rates. Thermochim Acta 403:55–63CrossRefGoogle Scholar
  38. 38.
    Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimeter using thin film sensors. Thermochim Acta 415:1–7CrossRefGoogle Scholar
  39. 39.
    Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45:3755–3763CrossRefGoogle Scholar
  40. 40.
    Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207CrossRefGoogle Scholar
  41. 41.
    De Santis F, Adamovsky S, Titomanlio G, Schick C (2006) Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562–2567CrossRefGoogle Scholar
  42. 42.
    Janeschitz-Kriegl H (1996) The role of transport phenomena in polymer science. J. Macromol Sci-Pure Appl Chem A 33:841–858CrossRefGoogle Scholar
  43. 43.
    Berger J, Schneider W (1986) A zone model of rate controlled solidification. Plast Rubber Process Appl 6:127–133Google Scholar
  44. 44.
    Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylenes. Makromol Chem 74:134–158CrossRefGoogle Scholar
  45. 45.
    Lovinger AJ, Chua JO, Gryte CC (1977) Studies of the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed 15:641–656CrossRefGoogle Scholar
  46. 46.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford, p 285Google Scholar
  47. 47.
    Eder G, Janeschitz-Kriegl H (1984) Stefan problem and polymer processing. Polym Bull 11:93–98CrossRefGoogle Scholar
  48. 48.
    Janeschitz-Kriegl M, Janeschitz-Kriegl H, Eder G, Forstner R (2006) Heat transfer through metal walls of finite thiskness. Intern Polym Proc 21:41–48CrossRefGoogle Scholar
  49. 49.
    Bundrup J, Immergut H (1990) Polymer Handbook. WileyGoogle Scholar
  50. 50.
    Ullmann F (1990) Enzyklopaedie der techn. Elsevier, ChemieGoogle Scholar
  51. 51.
    Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of tubular type. Publications on Engineering, BerkleyGoogle Scholar
  52. 52.
    Eder G (1997) Fundamentals of structure formation in crystallizing polymers. In: Natada K, Kitayama T, Vogl O (eds) Macromolecular design of polymeric materials. Marcel Dekker Inc., pp 761–782Google Scholar
  53. 53.
    Daley DJ, Vere-Jones D (1988) An introduction to the theory of point processes. Springer, New YorkGoogle Scholar
  54. 54.
    Schulze GEW, Naujeck TR (1991) A growing 2D spherulite and calculus of variation. Colloid Polym Sci 269:689–695CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Johannes Kepler UniversityLinzAustria

Personalised recommendations