Advertisement

Underlying Principles and Recurring Ideas of Formal Grammars

  • Alexander Okhotin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10792)

Abstract

The paper investigates some of the fundamental ideas of the context-free grammar theory, as they are applied to several extensions and subclasses of context-free grammars. For these grammar families, including multi-component grammars, tree-adjoining grammars, conjunctive grammars and Boolean grammars, a summary of the following properties is given: parse trees, language equations, closure under several operations, normal forms, parsing algorithms, representation in the FO(LFP) logic, representations by automata and by categorial grammars, homomorphic characterizations, hardest language theorems, pumping lemmata and other limitations, computational complexity.

References

  1. 1.
    Aizikowitz, T., Kaminski, M.: Conjunctive grammars and alternating pushdown automata. Acta Informatica 50(3), 175–197 (2013).  https://doi.org/10.1007/978-3-540-69937-8_6 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aizikowitz, T., Kaminski, M.: LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata. J. Comput. Syst. Sci. 82(8), 1329–1359 (2016).  https://doi.org/10.1016/j.jcss.2016.05.008 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, 3 (2009).  https://doi.org/10.1145/1516512.1516518 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bader, C., Moura, A.: A generalization of Ogden’s lemma. J. ACM 29(2), 404–407 (1982).  https://doi.org/10.1145/322307.322315 MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure grammars. Bull. Res. Counc. Israel 9F, 155–166 (1960)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14, 143–177 (1961)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided context specifications. Inf. Comput. 237, 268–293 (2014).  https://doi.org/10.1016/j.ic.2014.03.003 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Barash, M., Okhotin, A.: Two-sided context specifications in formal grammars. Theoret. Comput. Sci. 591, 134–153 (2015).  https://doi.org/10.1016/j.tcs.2015.05.004 MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45711-9_1 CrossRefGoogle Scholar
  10. 10.
    Blattner, M., Ginsburg, S.: Position-restricted grammar forms and grammars. Theoret. Comput. Sci. 17(1), 1–27 (1982).  https://doi.org/10.1016/0304-3975(82)90128-1 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Blum, N.: More on the power of chain rules in context-free grammars. Theoret. Comput. Sci. 27, 287–295 (1983).  https://doi.org/10.1016/0304-3975(82)90122-0 MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Boasson, L., Nivat, M.: Le cylindre des langages linéaires. Math. Syst. Theory 11, 147–155 (1977).  https://doi.org/10.1007/BF01768473 zbMATHCrossRefGoogle Scholar
  13. 13.
    Boullier, P.: A cubic time extension of context-free grammars. Grammars 3(2–3), 111–131 (2000).  https://doi.org/10.1023/A:1009907814595 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in \(\log n\) space. North-Holland Math. Stud. 102, 1–19 (1985).  https://doi.org/10.1016/S0304-0208(08)73072-X MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Brent, R.P., Goldschlager, L.M.: A parallel algorithm for context-free parsing. Aust. Comput. Sci. Commun. 6(7), 7.1–7.10 (1984)Google Scholar
  16. 16.
    Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular automata. Acta Informatica 35(4), 329–352 (1998).  https://doi.org/10.1007/s002360050123 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956).  https://doi.org/10.1109/TIT.1956.1056813 zbMATHCrossRefGoogle Scholar
  18. 18.
    Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages, In: Braffort, H. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963).  https://doi.org/10.1016/S0049-237X(08)72023-8
  19. 19.
    Chytil, M.P.: Kins of context-free languages. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) MFCS 1986. LNCS, vol. 233, pp. 44–58. Springer, Heidelberg (1986).  https://doi.org/10.1007/BFb0016233 CrossRefGoogle Scholar
  20. 20.
    Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently learn context-freelanguages. J. Mach. Learn. Res. 11, 2707–2744 (2010). http://www.jmlr.org/papers/v11/clark10a.html
  21. 21.
    Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: 11th Annual ACM Symposium on Theory of Computing, (STOC 1979, 30 April–2 May 1979, Atlanta, Georgia, USA), pp. 338–345 (1979).  https://doi.org/10.1145/800135.804426
  22. 22.
    Crespi Reghizzi, S., San Pietro, P.: The missing case in Chomsky-Schützenberger theorem. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 345–358. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30000-9_27 CrossRefGoogle Scholar
  23. 23.
    Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative context-free languages. Int. J. Found. Comput. Sci. 25(8), 955–970 (2014).  https://doi.org/10.1142/S0129054114400176 zbMATHCrossRefGoogle Scholar
  24. 24.
    Engelfriet, J.: An elementary proof of double Greibach normal form. Inf. Process. Lett. 44(6), 291–293 (1992).  https://doi.org/10.1016/0020-0190(92)90101-Z MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011).  https://doi.org/10.1016/j.ipl.2011.03.019 MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Flajolet, P.: Analytic models and ambiguity of context-free languages. Theoret. Comput. Sci. 49, 283–309 (1987).  https://doi.org/10.1016/0304-3975(87)90011-9 MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963).  https://doi.org/10.1145/321172.321179 zbMATHCrossRefGoogle Scholar
  28. 28.
    Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inf. Control 9(6), 620–648 (1966).  https://doi.org/10.1016/S0019-9958(66)80019-0 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967).  https://doi.org/10.1145/321386.321403 MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. J. Comput. Syst. Sci. 1(1), 1–23 (1967).  https://doi.org/10.1016/S0022-0000(67)80003-5 MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9, 350–371 (1962).  https://doi.org/10.1145/321127.321132 MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Greibach, S.A.: A new normal-form theorem for context-free phrase structure grammars. J. ACM 12, 42–52 (1965).  https://doi.org/10.1145/321250.321254 MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2(4), 304–310 (1973).  https://doi.org/10.1137/0202025 MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Greibach, S.A.: Jump PDA’s and hierarchies of deterministic context-free languages. SIAM J. Comput. 3(2), 111–127 (1974).  https://doi.org/10.1137/0203009 MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57163-9_25 CrossRefGoogle Scholar
  36. 36.
    Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of systolic trellis automata. Theoret. Comput. Sci. 29, 123–153 (1984).  https://doi.org/10.1016/0304-3975(84)90015-X MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68(1–3), 86–104 (1986).  https://doi.org/10.1016/S0019-9958(86)80029-8 MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Immerman, N.: Descriptive Complexity. Springer, New York (1999).  https://doi.org/10.1007/978-1-4612-0539-5 zbMATHCrossRefGoogle Scholar
  39. 39.
    Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Int. J. Found. Comput. Sci. 19(3), 597–615 (2008).  https://doi.org/10.1142/S012905410800584X zbMATHCrossRefGoogle Scholar
  40. 40.
    Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability and unbounded growth. Theory Comput. Syst. 46(1), 27–58 (2010).  https://doi.org/10.1007/s00224-008-9139-5 MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Jeż, A., Okhotin, A.: Computational completeness of equations over sets of natural numbers. Inf. Comput. 237, 56–94 (2014).  https://doi.org/10.1016/j.ic.2014.05.001 MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02737-6_25 CrossRefGoogle Scholar
  43. 43.
    Kanazawa, M., Kobele, G.M., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure of the strong pumping lemma for multiple context-free languages. Theory Comput. Syst. 55(1), 250–278 (2014).  https://doi.org/10.1007/s00224-014-9534-z MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Kelemenová, A.: Complexity of normal form grammars. Theoret. Comput. Sci. 28(3), 299–314 (1983).  https://doi.org/10.1016/0304-3975(83)90026-9 MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for Boolean grammars. Inf. Comput. 207(9), 945–967 (2009).  https://doi.org/10.1016/j.ic.2009.05.002 MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Kowalski, R.: Logic for Problem Solving. North-Holland, Amsterdam (1979)zbMATHGoogle Scholar
  47. 47.
    Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007).  https://doi.org/10.1007/s00224-006-1321-z MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Kuznetsov, S.: Conjunctive grammars in Greibach normal form and the Lambek calculus with additive connectives. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol. 8036, pp. 242–249. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39998-5_15 CrossRefGoogle Scholar
  49. 49.
    Kuznetsov, S., Okhotin, A.: Conjunctive categorial grammars. In: Proceedings of 15th Meeting on the Mathematics of Language (MOL 2017, London, UK, 13–14 July 2017), pp. 141–151. ACL (2017)Google Scholar
  50. 50.
    Lange, M.: Alternating context-free languages and linear time \(\mu \)-calculus with sequential composition. Electron. Notes Theoret. Comput. Sci. 68(2), 70–86 (2002).  https://doi.org/10.1016/S1571-0661(05)80365-2 zbMATHCrossRefGoogle Scholar
  51. 51.
    Lehtinen, T., Okhotin, A.: Boolean grammars and GSM mappings. Int. J. Found. Comput. Sci. 21(5), 799–815 (2010).  https://doi.org/10.1142/S0129054110007568 MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: IEEE Conference Record on Switching Circuit Theory and Logical Design, pp. 191–202 (1965).  https://doi.org/10.1109/FOCS.1965.14
  53. 53.
    McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967).  https://doi.org/10.1145/321406.321411 MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Nakanishi, R., Takada, K., Nii, H., Seki, H.: Efficient recognition algorithms for parallel multiple context-free languages and for multiple context-free languages. IEICE Trans. Inf. Syst. E81-D:11, 1148–1161 (1998)Google Scholar
  55. 55.
    Ogden, W.F.: A helpful result for proving inherent ambiguity. Math. Syst. Theory 2(3), 191–194 (1968).  https://doi.org/10.1007/BF01694004 MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Ogden, W., Ross, R.J., Winklmann, K.: An ‘interchange lemma’ for context-free languages. SIAM J. Comput. 14(2), 410–415 (1985).  https://doi.org/10.1137/0214031 MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Okhotin, A.: Conjunctive grammars. J. Automata Lang. Comb. 6(4), 519–535 (2001)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004).  https://doi.org/10.1016/j.ic.2004.03.006 MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata. Informatique Théorique et Applications 38(1), 69–88 (2004).  https://doi.org/10.1051/ita:2004004 MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Okhotin, A.: Unresolved systems of language equations: expressive power and decision problems. Theoret. Comput. Sci. 349(3), 283–308 (2005).  https://doi.org/10.1016/j.tcs.2005.07.037 MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Okhotin, A.: Recursive descent parsing for Boolean grammars. Acta Informatica 44(3–4), 167–189 (2007).  https://doi.org/10.1007/s00236-007-0045-0 MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Okhotin, A.: Unambiguous Boolean grammars. Inf. Comput. 206, 1234–1247 (2008).  https://doi.org/10.1016/j.ic.2008.03.023 MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Okhotin, A.: Decision problems for language equations. J. Comput. Syst. Sci. 76(3–4), 251–266 (2010).  https://doi.org/10.1016/j.jcss.2009.08.002 MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31653-1_12 CrossRefGoogle Scholar
  65. 65.
    Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013).  https://doi.org/10.1016/j.cosrev.2013.06.001 zbMATHCrossRefGoogle Scholar
  66. 66.
    Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars. Theoret. Comput. Sci. 516, 101–120 (2014).  https://doi.org/10.1016/j.tcs.2013.09.011 MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Okhotin, A.: The hardest language for conjunctive grammars. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 340–351. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34171-2_24 Google Scholar
  68. 68.
    Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction. Theoret. Comput. Sci. 411(26–28), 2559–2571 (2010).  https://doi.org/10.1016/j.tcs.2010.03.015 MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata. SIGACT News 45(2), 47–67 (2014).  https://doi.org/10.1145/2636805.2636821 MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Pereira, F.C.N., Warren, D.H.D.: Parsing as deduction. In: 21st Annual Meeting of the Association for Computational Linguistics (ACL 1983, Cambridge, Massachusetts, USA, 15–17 June 1983), pp. 137–144 (1983)Google Scholar
  71. 71.
    Pollard, C.J.: Generalized phrase structure grammars, head grammars, and natural language. Ph.D. thesis, Stanford University (1984)Google Scholar
  72. 72.
    Rajasekaran, S., Yooseph, S.: TAL recognition in \(O(M(n^2))\) time. J. Comput. Syst. Sci. 56(1), 83–89 (1998).  https://doi.org/10.1006/jcss.1997.1537 MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars. J. ACM 14(3), 501–507 (1967).  https://doi.org/10.1145/321406.321412 MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Rounds, W.C.: LFP: a logic for linguistic descriptions and an analysis of its complexity. Comput. Linguist. 14(4), 1–9 (1988)Google Scholar
  75. 75.
    Rytter, W.: On the recognition of context-free languages. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 318–325. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-16066-3_26 CrossRefGoogle Scholar
  76. 76.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978).  https://doi.org/10.1007/978-1-4612-6264-0 zbMATHCrossRefGoogle Scholar
  77. 77.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991).  https://doi.org/10.1016/0304-3975(91)90374-B MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning, Boston (2012)zbMATHGoogle Scholar
  79. 79.
    Sokołowski, S.: A method for proving programming languages non context-free. Inf. Process. Lett. 7(2), 151–153 (1978).  https://doi.org/10.1016/0020-0190(78)90080-7 MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-free languages. J. ACM 22(4), 499–500 (1975).  https://doi.org/10.1145/321906.321913 MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Szabari, A.: Alternujúce Zásobníkové Automaty (Alternating Pushdown Automata). M.Sc. thesis, 45 p. Diploma work, University of Košice (Czechoslovakia) (1991). (in Slovak)Google Scholar
  82. 82.
    Terrier, V.: On real-time one-way cellular array. Theoret. Comput. Sci. 141(1–2), 331–335 (1995).  https://doi.org/10.1016/0304-3975(94)00212-2 MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Terrier, V.: Recognition of poly-slender context-free languages by trellis automata. Theoret. Comput. Sci. 692, 1–24 (2017).  https://doi.org/10.1016/j.tcs.2017.05.041 MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Terrier, V.: Some computational limits of trellis automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 176–186. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58631-1_14 CrossRefGoogle Scholar
  85. 85.
    Urbanek, F.J.: On Greibach normal form construction. Theoret. Comput. Sci. 40, 315–317 (1985).  https://doi.org/10.1016/0304-3975(85)90173-2 MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10(2), 308–314 (1975).  https://doi.org/10.1016/S0022-0000(75)80046-8 MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Vardi, M.Y.: The complexity of relational query languages. In: STOC 1982, pp. 137–146 (1982).  https://doi.org/10.1109/SFCS.1981.18
  88. 88.
    Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Math. Syst. Theory 27(6), 511–546 (1994).  https://doi.org/10.1007/BF01191624 MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of Association for Computational Linguistics (ACL 1987), pp. 104–111 (1987)Google Scholar
  90. 90.
    Yoshinaka, R.: Distributional learning of conjunctive grammars and contextual binary feature grammars. J. Comput. Syst. Sci. (to appear).  https://doi.org/10.1016/j.jcss.2017.07.004
  91. 91.
    Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13089-2_50 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations