Context as Inter-domain Effects: The Hand-Action-Network Dynamic Language Embodiment Model

  • Agustín Ibáñez
  • Adolfo M. García
Chapter
Part of the SpringerBriefs in Psychology book series (BRIEFSPSYCHOL)

Abstract

This chapter introduces the Hand-Action-Network Dynamic Language Embodiment (HANDLE) model, which focuses on microanatomical brain dynamics to characterize the interweaving of object-targeted manual actions and associated linguistic information. First, we present the model’s neurocognitive architecture and functional assumptions, all based on neural coupling and predictive coding principles. Then, we explain the notational devices used to illustrate specific motor-language coupling effects. Next, we summarize the model’s main hypotheses and review critical evidence to test them. Moreover, we discuss its clinical implications, focusing on the detection of early cognitive deficits in Parkinson’s disease. Finally, we identify key questions and challenges to be addressed in future research. In sum, HANDLE incarnates a novel framework to explore fine-grained contextual codeterminations among the brain, body, and environment.

Keywords

HANDLE Action-language coupling Motor cognition Parkinson’s disease Embodiment disrupted Predictive coding Motor diseases 

References

  1. Abrevaya S, Sedeño L, Fittipaldi S, Pineada D, Lopera F, Buriticá O, et al. The road less traveled: alternative pathways for action-verb processing in Parkinson’s disease. J Alzheimers Dis. 2017;55(4):1429–35.CrossRefGoogle Scholar
  2. Aravena P, Hurtado E, Riveros R, Cardona JF, Manes F, Ibáñez A. Applauding with closed hands: neural signature of action-sentence compatibility effects. PLoS One. 2010;5(7):e11751.CrossRefGoogle Scholar
  3. Aravena P, Delevoye-Turrell Y, Deprez V, Cheylus A, Paulignan Y, Frak V, et al. Grip force reveals the context sensitivity of language-induced motor activity during “action words” processing: evidence from sentential negation. PLoS One. 2012;7(12):e50287.CrossRefGoogle Scholar
  4. Bak TH. The neuroscience of action semantics in neurodegenerative brain diseases. Curr Opin Neurol. 2013;26(6):671–7.CrossRefGoogle Scholar
  5. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for predictive coding. Neuron. 2012;76(4):695–711.CrossRefGoogle Scholar
  6. Bergen B, Lau TT, Narayan S, Stojanovic D, Wheeler K. Body part representations in verbal semantics. Mem Cogn. 2010;38(7):969–81.CrossRefGoogle Scholar
  7. Bernardis P, Gentilucci M. Speech and gesture share the same communication system. Neuropsychologia. 2006;44(2):178–90.CrossRefGoogle Scholar
  8. Bocanegra Y, García AM, Pineda D, Buriticá O, Villegas A, Lopera F, et al. Syntax, action verbs, action semantics, and object semantics in Parkinson’s disease: dissociability, progression, and executive influences. Cortex. 2015;69:237–54.CrossRefGoogle Scholar
  9. Bocanegra Y, García AM, Lopera F, Pineda D, Baena A, Ospina P, et al. Unspeakable motion: selective action-verb impairments in Parkinson’s disease patients without mild cognitive impairment. Brain Lang. 2017;168:37–46.CrossRefGoogle Scholar
  10. Borreggine KL, Kaschak MP. The action-sentence compatibility effect: It’s all in the timing. Cogn Sci. 2006;30:1097–112.CrossRefGoogle Scholar
  11. Boulenger V, Silber BY, Roy AC, Paulignan Y, Jeannerod M, Nazir TA. Subliminal display of action words interferes with motor planning: a combined EEG and kinematic study. J Physiol. 2008;102(1–3):130–6.Google Scholar
  12. Buccino G, Riggio L, Melli G, Binkofski F, Gallese V, Rizzolatti G. Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain research. Cogn Brain Res. 2005;24(3):355–63.CrossRefGoogle Scholar
  13. Buxbaum LJ, Schwartz MF, Carew TG. The role of semantic memory in object use. Cogn Neuropsychol. 1997;14(2):219–54.CrossRefGoogle Scholar
  14. Calvo N, Ibáñez A, Muñoz E, García AM. A core avenue for transcultural research on dementia: on the cross-linguistic generalization of language-related effects in Alzheimer’s disease and Parkinson’s disease. Int J Geriatr Psychiatry. 2017.  https://doi.org/10.1002/gps.4712.
  15. Cardona JF, Gershanik O, Gelormini-Lezama C, Houck AL, Cardona S, Kargieman L, et al. Action-verb processing in Parkinson’s disease: new pathways for motor-language coupling. Brain Struct Funct. 2013;218(6):1355–73.  https://doi.org/10.1007/s00429-013-0510-1.CrossRefPubMedGoogle Scholar
  16. Cardona J, Kargieman L, Sinay V, Gershanik O, Gelormini C, Amoruso L, et al. How embodied is action language? Neurological evidence from motor diseases. Cognition. 2014;131(2):311–22.  https://doi.org/10.1016/j.cognition.2014.02.001 CrossRefGoogle Scholar
  17. Chersi F, Thill S, Ziemke T, Borghi AM. Sentence processing: linking language to motor chains. Front Neurorobotics. 2010;4:4.CrossRefGoogle Scholar
  18. Dalla Volta R, Gianelli C, Campione GC, Gentilucci M. Action word understanding and overt motor behavior. Exp Brain Res. 2009;196(3):403–12.CrossRefGoogle Scholar
  19. Dalla Volta R, Fabbri-Destro M, Gentilucci M, Avanzini P. Spatiotemporal dynamics during processing of abstract and concrete verbs: an ERP study. Neuropsychologia. 2014;61:163–74.CrossRefGoogle Scholar
  20. de Vega M, Robertson DA, Glenberg AM, Kaschak MP, Rinck M. On doing two things at once: temporal constraints on actions in language comprehension. Mem Cogn. 2004;32(7):1033–43.CrossRefGoogle Scholar
  21. De Vega M, Moreno V, Castillo D. The comprehension of action-related sentences may cause interference rather than facilitation on matching actions. Psychol Res. 2013;77(1):20–30.CrossRefGoogle Scholar
  22. Fernandino L, Conant LL, Binder JR, Blindauer K, Hiner B, Spangler K, et al. Parkinson’s disease disrupts both automatic and controlled processing of action verbs. Brain Lang. 2013;127(1):65–74.CrossRefGoogle Scholar
  23. Frak V, Nazir T, Goyette M, Cohen H, Jeannerod M. Grip force is part of the semantic representation of manual action verbs. PLoS One. 2010;5(3):e9728.CrossRefGoogle Scholar
  24. Friston K. Hierarchical models in the brain. PLoS Comput Biol. 2008;4(11):e1000211.CrossRefGoogle Scholar
  25. Gallese V, Lakoff G. The Brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cogn Neuropsychol. 2005;22(3):455–79.CrossRefGoogle Scholar
  26. García AM, Ibáñez A. Two-person neuroscience and naturalistic social communication: the role of language and linguistic variables in brain-coupling research. Front Psych. 2014;5:124.  https://doi.org/10.3389/fpsyt.2014.00124.CrossRefGoogle Scholar
  27. García A, Ibáñez A. A touch with words: dynamic synergies between manual actions and language. Neurosci Biobehav Rev. 2016a;68:59–95.  https://doi.org/10.1016/j.neubiorev.2016.04.022.CrossRefPubMedPubMedCentralGoogle Scholar
  28. García AM, Ibáñez A. Hands typing what hands do: action-semantic integration dynamics throughout written verb production. Cognition. 2016b;149:56–66.CrossRefGoogle Scholar
  29. García AM, Ibáñez A. Processes and verbs of doing, in the brain: theoretical implications for systemic functional linguistics. Funct Lang. 2016c;23(3):305–35.CrossRefGoogle Scholar
  30. García AM, Abrevaya S, Kozono G, Cordero IG, Córdoba M, Kauffman MA, et al. The cerebellum and embodied semantics: evidence from a case of genetic ataxia due to STUB1 mutations. J Med Genet. 2016a;54(2):114–24.  https://doi.org/10.1136/jmedgenet-2016-104148.CrossRefPubMedGoogle Scholar
  31. García AM, Carrillo F, Orozco-Arroyave JR, Trujillo N, Vargas Bonilla JF, Fittipaldi S, et al. How language flows when movements don’t: an automated analysis of spontaneous discourse in Parkinson’s disease. Brain Lang. 2016b;162:19–28.CrossRefGoogle Scholar
  32. García AM, Bocanegra Y, Herrera E, Pino M, Muñoz E, Sedeño L, Ibáñez A. Action-semantic and syntactic deficits in subjects at risk for Huntington’s disease. J Neuropsychol. 2017a.  https://doi.org/10.1111/jnp.12120.
  33. García AM, Sedeño L, Trujillo N, Bocanegra Y, Gomez D, Pineda D, Villegas A, Muñoz E, Arias W, Ibáñez A. Language deficits as a preclinical window into Parkinson’s disease: evidence from asymptomatic parkin and dardarin mutation carriers. J Int Neuropsychol Soc. 2017b;23(2):150–8.  https://doi.org/10.1017/S1355617716000710.CrossRefPubMedGoogle Scholar
  34. García AM, Sedeño L, Herrera Murcia E, Couto B, Ibáñez A. A lesion-proof brain? Multidimensional sensorimotor, cognitive, and socio-affective preservation despite extensive damage in a stroke patient. Front Aging Neurosci. 2017c;8(335).  https://doi.org/10.3389/fnagi.2016.00335.
  35. Gentilucci M, Gangitano M. Influence of automatic word reading on motor control. Eur J Neurosci. 1998;10(2):752–6.CrossRefGoogle Scholar
  36. Geschwind N. Disconnexion syndromes in animals and man. Brain. 1965;88(2):237–94.CrossRefGoogle Scholar
  37. Glenberg A, Kaschak M. Grounding language in action. Psychon Bull Rev. 2002;9(3):558–65.CrossRefGoogle Scholar
  38. Glenberg AM, Sato M, Cattaneo L. Use-induced motor plasticity affects the processing of abstract and concrete language. Curr Biol. 2008;18(7):R290–1.CrossRefGoogle Scholar
  39. Goldenberg G, Hartmann K, Schlott I. Defective pantomime of object use in left brain damage: apraxia or asymbolia? Neuropsychologia. 2003;41(12):1565–73.CrossRefGoogle Scholar
  40. Goodale MA, Milner AD, Jakobson LS, Carey DP. A neurological dissociation between perceiving objects and grasping them. Nature. 1991;349(6305):154–6.CrossRefGoogle Scholar
  41. Grabowski TJ, Damasio H, Damasio AR. Premotor and prefrontal correlates of category-related lexical retrieval. NeuroImage. 1998;7(3):232–43.CrossRefGoogle Scholar
  42. Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338(6213):334–7.CrossRefGoogle Scholar
  43. Grezes J, Armony JL, Rowe J, Passingham RE. Activations related to “mirror” and “canonical” neurones in the human brain: an fMRI study. NeuroImage. 2003;18(4):928–37.CrossRefGoogle Scholar
  44. Hagoort P. Nodes and networks in the neural architecture for language: Broca’s region and beyond. Curr Opin Neurobiol. 2014;28:136–41.CrossRefGoogle Scholar
  45. Heath M, Roy EA, Black SE, Westwood DA. Intransitive limb gestures and apraxia following unilateral stroke. J Clin Exp Neuropsychol. 2001;23(5):628–42.CrossRefGoogle Scholar
  46. Ibáñez A, Cardona JF, Dos Santos YV, Blenkmann A, Aravena P, Roca M, et al. Motor-language coupling: direct evidence from early Parkinson’s disease and intracranial cortical recordings. Cortex. 2013;49(4):968–84.CrossRefGoogle Scholar
  47. Kargieman L, Herrera E, Baez S, García AM, Dottori M, Gelormini C, et al. Motor-language coupling in Huntington’s disease families. Front Aging Neurosci. 2014;6:122.CrossRefGoogle Scholar
  48. Kaschak MP, Borreggine KL. Temporal dynamics of the action-sentence compatibility effect. Q J Exp Psychol (Colchester). 2008;61(6):883–95.CrossRefGoogle Scholar
  49. König P, Schillen TB. Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Comput. 1991;3(2):155–66.CrossRefGoogle Scholar
  50. Kraskov A, Dancause N, Quallo MM, Shepherd S, Lemon RN. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron. 2009;64(6):922–30.CrossRefGoogle Scholar
  51. Lindemann O, Stenneken P, van Schie HT, Bekkering H. Semantic activation in action planning. J Exp Psychol Hum Percept Perform. 2006;32(3):633–43.CrossRefGoogle Scholar
  52. MacDonald MC, Pearlmutter NJ, Seidenberg MS. The lexical nature of syntactic ambiguity resolution [corrected]. Psychol Rev. 1994;101(4):676–703.CrossRefGoogle Scholar
  53. Marino BF, Gallese V, Buccino G, Riggio L. Language sensorimotor specificity modulates the motor system. Cortex. 2012;48(7):849–56.CrossRefGoogle Scholar
  54. Melloni M, Sedeño L, Hesse E, García-Cordero I, Mikulan E, Plastino A, et al. Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease. Sci Rep. 2015;5:11899.  https://doi.org/10.1038/srep11899.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mirabella G, Iaconelli S, Spadacenta S, Federico P, Gallese V. Processing of hand-related verbs specifically affects the planning and execution of arm reaching movements. PLoS One. 2012;7(4):e35403.CrossRefGoogle Scholar
  56. Naccache L, Gaillard R, Adam C, Hasboun D, Clemenceau S, Baulac M, et al. A direct intracranial record of emotions evoked by subliminal words. Proc Natl Acad Sci U S A. 2005;102(21):7713–7.CrossRefGoogle Scholar
  57. Neininger B, Pulvermuller F. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia. 2003;41(1):53–70.CrossRefGoogle Scholar
  58. Papeo L, Vallesi A, Isaja A, Rumiati RI. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex. PLoS One. 2009;4(2):e4508.CrossRefGoogle Scholar
  59. Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):976–87.CrossRefGoogle Scholar
  60. Petit L, Courtney SM, Ungerleider LG, Haxby JV. Sustained activity in the medial wall during working memory delays. J Neurosci. 1998;18(22):9429–37.CrossRefGoogle Scholar
  61. Pulvermüller F. Grounding language in the brain. In: De Vega M, Glenberg A, Graesser A, editors. Symbols, embodiment, and meaning. Oxford: Oxford University Press; 2008. p. 85–116.CrossRefGoogle Scholar
  62. Pulvermüller F, Hauk O, Nikulin VV, Ilmoniemi R. Functional links between motor and language systems. Eur J Neurosci. 2005;21:793–7.CrossRefGoogle Scholar
  63. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2(1):79–87.CrossRefGoogle Scholar
  64. Raos V, Umilta MA, Murata A, Fogassi L, Gallese V. Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol. 2006;95(2):709–29.CrossRefGoogle Scholar
  65. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004;363(9423):1783–93.CrossRefGoogle Scholar
  66. Santana EJ, de Vega M. An ERP study of motor compatibility effects in action language. Brain Res. 2013;1526:71–83.CrossRefGoogle Scholar
  67. Sato M, Mengarelli M, Riggio L, Gallese V, Buccino G. Task related modulation of the motor system during language processing. Brain Lang. 2008;105(2):83–90.CrossRefGoogle Scholar
  68. Silveri MC, Ciccarelli N, Baldonero E, Piano C, Zinno M, Soleti F, et al. Effects of stimulation of the subthalamic nucleus on naming and reading nouns and verbs in Parkinson's disease. Neuropsychologia. 2012;50(8):1980–9.CrossRefGoogle Scholar
  69. Teichmann M, Turc G, Nogues M, Ferrieux S, Dubois B. A mental lexicon without semantics. Neurology. 2012;79(6):606–7.CrossRefGoogle Scholar
  70. Yang J, Andric M, Mathew MM. The neural basis of hand gesture comprehension: a meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev. 2015;57:88–104.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Agustín Ibáñez
    • 1
  • Adolfo M. García
    • 1
  1. 1.Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO FoundationFavaloro UniversityBuenos AiresArgentina

Personalised recommendations