Advertisement

Streamlining Semantics from Requirements to Implementation Through Agile Mind Mapping Methods

  • Robert Andrei Buchmann
  • Ana-Maria Ghiran
  • Cristina-Claudia Osman
  • Dimitris Karagiannis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10753)

Abstract

[Context and motivation] Semantics are the essential asset that must be managed during requirements elicitation, and further made available to the implementation phase. Consequently, it makes sense to investigate how knowledge representation techniques can support both human-oriented and machine-readable requirements modelling to facilitate the transfer of semantics between the two phases. Semantic technology such as the Resource Description Framework (RDF) and methodologies such as Agile Modelling Method Engineering (AMME) may converge towards new methods of requirements elicitation. [Question/problem] How can requirements semantics be captured in a fashion that is diagrammatic, agile and streamlined to support the implementation phase? [Principal ideas/results] We introduce the notion of Agile Mind Mapping Method as an artefact that repurposes agile modelling methods for mind mapping practices and is enriched with an RDF-based semantic interoperability mechanism for transferring diagrammatic requirements descriptions to implemented software artefacts. [Contribution] Semantic technology, agile metamodeling and mind mapping best practices are combined in an elicitation method based on agile modelling artefacts that can streamline semantics from mind map-based requirements to semantics-aware implementations.

Keywords

Agile requirements modelling Resource Description Framework Agile Modelling Method Engineering Mind mapping 

Notes

Acknowledgement

This work is supported by the Romanian National Research Authority through UEFISCDI, under grant agreement PN-III-P2-2.1-PED-2016-1140.

References

  1. 1.
    Buzan, T.: Use Your Head. British Broadcasting Corporation, London (1974)Google Scholar
  2. 2.
    Buzan, T., Buzan, B.: The Mind Map Book: How to Use Radiant Thinking to Maximize Your Brain’s Untapped Potential. Plume, New York (1996)Google Scholar
  3. 3.
    Software for mindmapping and information organization – official webiste. https://www.mind-mapping.org/
  4. 4.
    Mahmud, I., Veneziano, V.: Mind-mapping: an effective technique to facilitate requirements engineering in agile software development. In: Proceedings of the 14th International Conference on Computer and Information Technology, pp. 157–162. IEEE (2011)Google Scholar
  5. 5.
    Jaafar, J., Atan, M., Hamid, N.: Collaborative mind map tool to facilitate requirement elicitation. In: Proceedings of the 3rd International Conference on Computing and Informatics 2011, pp. 214–219. Universiti Utara Malaysia Press (2011)Google Scholar
  6. 6.
    Mylopoulos, J.: Conceptual modelling and Telos. In: Loucopoulos, P., Zicari, R. (eds.) Conceptual Modelling, Databases, and CASE: An Integrated View of Information System Development, pp. 49–68. Wiley Press, New York (1992)Google Scholar
  7. 7.
    Object Management Group, The MetaObject Facility Specification. http://www.omg.org/mof/
  8. 8.
    The Resource Description Framework – official website. http://www.w3.org/RDF
  9. 9.
    The Mind Mapping Software Blog, Frey C.: Concept maps vs. mind maps – updated for 2016 (2016). http://mindmappingsoftwareblog.com/concept-maps-vs-mind-maps/
  10. 10.
    van der Aalst, W.M.P.: Process-aware information systems: lessons to be learned from process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 1–26. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00899-3_1 CrossRefGoogle Scholar
  11. 11.
    Moody, D., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving the cognitive effectiveness of the i* visual notation. Requir. Eng. 15(2), 141–175 (2010)CrossRefGoogle Scholar
  12. 12.
    Loucopoulos, P., Kavakli, E.: Capability modeling with application on large-scale sports events. In: Proceedings of the 22nd Americas Conference on Information Systems 2016. Association for Information Systems (2016)Google Scholar
  13. 13.
    Karagiannis, D.: Agile modeling method engineering. In: Proceedings of the 19th Panhellenic Conference on Informatics 2015, pp. 5–10. ACM, New York (2015)Google Scholar
  14. 14.
    Frank, U.: Domain-specific modeling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36654-3_6 CrossRefGoogle Scholar
  15. 15.
    Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and multi-tool CASE and CAME environment. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland, C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineering, pp. 109–129. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36926-1_9 CrossRefGoogle Scholar
  16. 16.
    BOC GmbH, ADOxx metamodeling platform – official website. http://www.adoxx.org/live/home
  17. 17.
    Fill, H.-G., Redmond, T., Karagiannis, D.: Formalizing meta models with FDMM: the ADOxx case. In: Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS 2012. LNBIP, vol. 141, pp. 429–451. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40654-6_26 CrossRefGoogle Scholar
  18. 18.
    Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45705-4_19 CrossRefGoogle Scholar
  19. 19.
    OMiLAB (Open Models Initiative Laboratory) – official website. http://omilab.org
  20. 20.
    Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain-Specific Conceptual Modeling. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39417-6 Google Scholar
  21. 21.
    Ontotext, GraphDB - official website. http://graphdb.ontotext.com/
  22. 22.
  23. 23.
    W3C, RDF TriG – official specification. https://www.w3.org/TR/trig
  24. 24.
    W3C, Rich Structured Data Markup for Web Documents. https://www.w3.org/TR/rdfa-primer/
  25. 25.
    Eclipse RDF4j - official documentation. http://docs.rdf4j.org/rest-api/
  26. 26.
    Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1(1), Morgan & Claypool, San Francisco (2011)Google Scholar
  27. 27.
    DBPedia – official website. http://wiki.dbpedia.org/
  28. 28.
    Accessing Relational Databases as Virtual RDF Graphs (D2RQ) - official website. http://d2rq.org
  29. 29.
    Buzan, T.: Mind Mapping – official website. http://www.tonybuzan.com/about/mind-mapping/
  30. 30.
    Buchmann, R.A., Karagiannis, D.: Modelling mobile app requirements for semantic traceability. Requir. Eng. 22(1), 41–75 (2017)CrossRefGoogle Scholar
  31. 31.
    Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)CrossRefGoogle Scholar
  32. 32.
    Yu, E.S.: Towards modelling and reasoning support for early-phase requirements engineering. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering 1997, pp. 226–235. IEEE (1997)Google Scholar
  33. 33.
    OMiLAB Bee-Up – official website. http://austria.omilab.org/psm/content/bee-up/info. Accessed 20 Sept 2017
  34. 34.
    Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Fundamental conceptual modeling languages in OMiLAB. Domain-Specific Conceptual Modeling, pp. 3–30. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39417-6_1 CrossRefGoogle Scholar
  35. 35.
    Buchmann, R.A., Karagiannis, D.: Domain-specific diagrammatic modelling: a source of machine-readable semantics for the Internet of Things. Cluster Comput. 20(1), 895–908 (2017)CrossRefGoogle Scholar
  36. 36.
    Karagiannis, D., Buchmann, R.A.: Linked Open Models: extending Linked Open Data with conceptual model information. Inf. Syst. 56, 174–197 (2016)CrossRefGoogle Scholar
  37. 37.
    Beel, J., Gipp, B., Stiller, J.O.: Information retrieval on mind maps-what could it be good for? In: Proceeding of the 5th International Conference on Collaborative Computing: Networking, Applications and Worksharing 2009, pp. 1–4. IEEE (2009)Google Scholar
  38. 38.
    Beel, J., Gipp, B., Müller, C.: “SciPlore MindMapping”: a tool for creating mind maps combined with PDF and reference management. D-Lib Mag. 15(11/12) (2009).  https://doi.org/10.1045/november2009-inbrief
  39. 39.
    Wanderley, F., Silveira, D., Araujo, J., Moreira, A., Guerra, E.: Experimental evaluation of conceptual modelling through mind maps and model driven engineering. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8583, pp. 200–214. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09156-3_15 Google Scholar
  40. 40.
    Wanderley, F., da Silveria, D.S.: A framework to diminish the gap between the business specialist and the software designer. In: Proceedings of the 8th International Conference on Quality of Information and Communications Technology 2012, pp. 199–204. IEEE (2012)Google Scholar
  41. 41.
    Wanderley, F., Silva, A., Araujo, J.: Evaluation of BehaviorMap: a user-centered behavior language. In: Proceedings of the 9th International Conference on Research Challenges in Information Science, pp. 309–320. IEEE (2015)Google Scholar
  42. 42.
    Brinkschulte, L., Enders, A., Rebstadt, J., Mertens, R: Aspect-oriented mind mapping and its potential for ontology editing. In: Proceedings of the 10th International Conference on Semantic Computing 2016, pp. 194–201. IEEE (2016)Google Scholar
  43. 43.
    Dermeval, D., Vilela, J., Bittencourt, I., Castro, J., Isotani, S., Brito, P., Silva, A.: Applications of ontologies in requirements engineering: a systematic review of the literature. Requir. Eng. 21(4), 405–437 (2016)CrossRefGoogle Scholar
  44. 44.
    Siegemund, K., Thomas, E.J., Aßmann, U., Pan, J., Zhao, Y.: Towards ontology-driven requirements engineering. In: Proceedings of the 7th International Workshop on Semantics-Enabled Software Engineering (2011)Google Scholar
  45. 45.
    Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Omoronyia, I., Zojer, H.: Ontology-driven guidance for requirements elicitation. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 212–226. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21064-8_15 CrossRefGoogle Scholar
  46. 46.
    Wüest, D., Seyff, N., Glinz, M.: Sketching and notation creation with FlexiSketch Team: evaluating a new means for collaborative requirements elicitation. In: Proceedings of the 23rd IEEE International Requirements Engineering Conference, pp. 186–195. IEEE (2015)Google Scholar
  47. 47.
    Karagiannis D., Buchmann, R.A.: A proposal for deploying Hybrid Knowledge Bases: the ADOxx-to-GraphDB interoperability case. In: Proceedings of the 51st Hawaii Conference on System Sciences, University of Hawaii, pp. 4055–4064 (2018)Google Scholar
  48. 48.
    Prat, N., Comyn-Wattiau, I., Akoka, J.: Artifact evaluation in information systems design-science research – a holistic view. In: Proceedings of the 19th Pacific Asia Conference on Information Systems 2014, p. 23. Association for Information Systems (2014)Google Scholar
  49. 49.
    EnterKnow project – homepage. http://enterknow.granturi.ubbcluj.ro

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Business Informatics Research CenterBabeș-Bolyai UniversityCluj-NapocaRomania
  2. 2.Knowledge Engineering Research Group, Faculty of Computer ScienceUniversity of ViennaViennaAustria

Personalised recommendations