MASH 1-1-1 CTΔΣM with FIR DAC and Loop-Unrolling Quantizer

  • Qiyuan Liu
  • Alexander Edward
  • Carlos Briseno-Vidrios
  • Jose Silva-Martinez
Chapter

Abstract

This chapter discusses the design of a MASH 1-1-1 CTΔΣM employing finite impulse response (FIR) digital-to-analog converters (DACs) and encoder-embedded loop-unrolling (EELU) quantizers. The presented MASH 1-1-1 topology is a cascade of three single-loop first-order CTΔΣM stages. Each stage consists of an active-RC integrator, a current-steering DAC, and an EELU quantizer. An FIR filter in the main 1.5-bit DAC improves the modulator’s jitter sensitivity performance. The FIR’s effect on the noise transfer function (NTF) of the modulator is compensated in the digital domain, thanks to the MASH topology. Instead of employing a conventional analog direct feedback path, a 1.5-bit EELU quantizer based on multiplexing among comparator outputs is presented. Fabricated in a 40-nm low-power CMOS technology, the modulator’s prototype achieves a 67.3 dB of signal-to-noise and distortion ratio (SNDR) within 50.5 MHz of bandwidth (BW), consuming 19.0 mW of total power (P).

References

  1. 1.
    N. Klemmer, S. Akhtar, V. Srinivasan, P. Litmanen, H. Arora, S. Uppathil, S. Kaylor, A. Akour, V. Wang, M. Mares, F. Dulger, A. Frank, D. Ghosh, S. Madhavapeddi, H. Safiri, J. Mehta, A. Jain, H. Choo, E. Zhang, C. Sestok, C. Fernando, K. Rajagopal, S. Ramakhrisnan, V. Sinari, V. Baireddy, A 45nm CMOS RF-to-bits LTE/WCDMA FDD/TDD 2x2 MIMO base-station transceiver SoC with 200 MHz RF bandwidth, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2016), pp. 164–165Google Scholar
  2. 2.
    M. Bolatkale, L.J. Breems, R. Rutten, K.A.A. Makinwa, A 4 Ghz continuous-time ΔΣ ADC with 70 dB DR and -74 dBFS THD in 125 MHz BW. IEEE J. Solid State Circuits 46(12), 2857–2867 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Shettigar, S. Pavan, Design techniques for wideband single-bit continuous-time ΔΣ modulators with FIR feedback DACs. IEEE J. Solid State Circuits 47(12), 2865–2879 (2012)CrossRefGoogle Scholar
  4. 4.
    J.K. Cho, S. Woo, A 6-mW, 70.1-dB SNDR, and 20-MHz BW continuous-time sigma-delta modulator using low-noise high-linearity feedback DAC. IEEE Trans. Very Large Scale Integr. Syst. 25(5), 1742–1755 (2017)Google Scholar
  5. 5.
    V. Srinivasan, V. Wang, P. Satarzadeh, B. Haroun, M. Corsi, A 20mW 61dB SNDR (60 MHz BW) 1b 3rd-Order continuous-time delta-sigma modulator clocked at 6 GHz in 45 nm CMOS, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2012), pp. 158–159Google Scholar
  6. 6.
    O. Oliaei, Sigma-delta modulator with spectrally shaped feedback. IEEE Trans. Circuits Syst. II 50(9), 518–530 (2013)CrossRefGoogle Scholar
  7. 7.
    B. Putter, ΣΔ ADC with finite impulse response feedback DAC, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2004), pp. 76–77Google Scholar
  8. 8.
    S. Ho, C.-L. Lo, J. Ru, J. Zhao, A 23 mW, 73 dB dynamic range, 80 MHz BW continuous-time delta-sigma modulator in 20 nm CMOS. IEEE J. Solid State Circuits 50(4), 908–919 (2015)CrossRefGoogle Scholar
  9. 9.
    M.B. Dayanik, D. Weyer, M.P. Flynn, A 5GS/s 156MHz BW 70dB DR continuous-time sigma-delta modulator with time-interleaved reference data-weighted averaging, in IEEE Int. Symp. VLSI Circuits (VLSI) Dig. Tech. Papers, Kyoto (2017)Google Scholar
  10. 10.
    H.M. Geddada, C.-J. Park, H.-J. Jeon, J. Silva-Martinez, A.I. Karsilayan, D. Garrity, Design techniques to improve blocker tolerance of continuous-time ΔΣ ADCs. IEEE Trans. Very Large Scale Integr. Syst. 25(1), 54–67, (2015)CrossRefGoogle Scholar
  11. 11.
    J.G. Kauffman, P. Witte, M. Lehmann, J. Becker, Y. Manoli, M. Ortmanns, A 72 dB DR, ΔΣ modulator using digitally estimated, auxiliary DAC linearization achieving 88 fJ/conv-step in 25 MHz BW. IEEE J. Solid State Circuits 49(4), 392–404 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Reddy, S. Dey, S. Rao, B. Young, P. Prabha, P.K. Hanumolu, A 54mW 1.2GS/s 71.5dB SNDR 50MHz BW VCO-based CT ΔΣ ADC using dual phase/frequency feedback in 65nm CMOS, in IEEE Int. Symp. VLSI Circuits (VLSI) Dig. Tech. Papers, Kyoto (2015), pp. C256–C257Google Scholar
  13. 13.
    S.-H. Wu, T.-K. Kao, Z.-M. Lee, J.-Y. Tsai, A 160MHz-BW 72dB-DR 40mW continuous-time ΔΣ modulator in 16nm CMOS with analog ISI-reduction technique, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2016), pp. 280–281Google Scholar
  14. 14.
    A. Jain, S. Pavan, ‘A 13.3mW 60MHz bandwidth, 76dB DR 6GS/s CTDSM with time interleaved FIR feedback, in IEEE Int. Symp. VLSI Circuits (VLSI) Dig. Tech. Papers, Honolulu (2016), pp. 1–2Google Scholar
  15. 15.
    S.-J. Huang, N. Egan, D. Kesharwani, F. Opteynde, M. Ashburn, A 125MHz-BW 71.9dB-SNDR VCO-based CT ΣΔ ADC with segmented phase-domain ELD compensation in 16nm CMOS, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2017), pp. 470–471Google Scholar
  16. 16.
    L.J. Breems, R. Rutten, G. Wetzker, A cascaded continuous-time ΣΔ modulator with 67-dB dynamic range in 10-MHz bandwidth. IEEE J. Solid State Circuits 39(12), 2152–2160 (2004)CrossRefGoogle Scholar
  17. 17.
    Y.-S. Shu, J. Kamiishi, K. Tomioka, K. Hamashita, B.-S. Song, LMS-based noise leakage calibration of cascaded continuous-time ΔΣ modulators. IEEE J. Solid State Circuits 45(2), 368–379 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Edward, Q. Liu, C. Briseno-Vidrios, M. Kinyua, E.G. Soenen, A.I. Karsilayan, J. Silva-Martinez, A 43-mW MASH 2-2 CT ΣΔ modulator attaining 74.4/75.8/76.8 dB of SNDR/SNR/DR and 50 MHz of BW in 40-nm CMOS. IEEE J. Solid State Circuits 52(2), 448–459 (2017)Google Scholar
  19. 19.
    Y. Dong, W. Yang, R. Schreier, A. Sheikholeslami, S. Korrapati, A continuous-time 0-3 MASH ADC achieving 88 dB DR with 53 MHz BW in 28 nm CMOS. IEEE J. Solid State Circuits 49(12), 2868–2877 (2014)CrossRefGoogle Scholar
  20. 20.
    D.-Y. Yoon, S. Ho, H.-S. Lee, A continuous-time sturdy-MASH ΔΣ modulator in 28 nm CMOS. IEEE J. Solid State Circuits 50(12), 2880–2890 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Dong, J. Zhao, W. Yang, T. Caldwell, H. Shibata, R. Schreier, Q. Meng, J. Silva, D. Paterson, J. Gealow, A 930mW 69dB-DR 465MHz-BW CT 1-2 MASH ADC in 28nm CMOS. in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2016), pp. 278–279Google Scholar
  22. 22.
    M. Keller, A. Buhmann, F. Gerfers, M. Ortmanns, Y. Manoli, On the implicit anti-aliasing feature of continuous-time cascaded sigma-delta modulators. IEEE Trans. Circuits Syst. I 54(12), 2639–2645 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Yan, E. Sanchez-Sinencio, A continuous-time ΔΣ modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth. IEEE J. Solid State Circuits 39(1), 75-86 (2004)Google Scholar
  24. 24.
    S.D. Kulchycki, R. Trofin, K. Vleugels, B.A. Wooley, A 77-dB dynamic range, 7.4-MHz hybrid continuous-time/discrete-time cascaded ΣΔ modulator. IEEE J. Solid State Circuits 43(4), 796-804 (2008)Google Scholar
  25. 25.
    J.A. Cherry, W.M. Snelgrove, Clock jitter and quantizer metastability in continuous-time delta-sigma modulators. IEEE Trans. Circuits Syst. II 46(6), 661–676 (1999)CrossRefGoogle Scholar
  26. 26.
    B.K. Thandri, J. Silva-Martinez, A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no miller capacitors. IEEE J. Solid State Circuits 38(2), 237–243 (2003)CrossRefGoogle Scholar
  27. 27.
    J. Winters, S. Kasturia, Adaptive nonlinear cancellation for high speed fiber-optic systems. IEEE J. Lightwave Technol. 10(7), 971–977 (1992)CrossRefGoogle Scholar
  28. 28.
    P. Fontaine, A.N. Mohieldin, A. Bellaouar, A low-noise low-voltage CT ΣΔ modulator with digital compensation of excess loop delay, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2005), pp. 498–499Google Scholar
  29. 29.
    Y.-S. Shu, J.-Y. Tsai, P. Chen, T.-Y. Lo, P.-C. Chiu, A 28fJ/conv-step CT ΣΔ modulator with 78dB DR and 18MHz BW in 28nm CMOS using a highly digital multibit quantizer, in IEEE Int. Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, San Francisco (2013), pp. 268–269Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qiyuan Liu
    • 1
  • Alexander Edward
    • 2
  • Carlos Briseno-Vidrios
    • 3
  • Jose Silva-Martinez
    • 4
  1. 1.Qualcomm IncorporatedTempeUSA
  2. 2.Intel CorporationHillsboroUSA
  3. 3.Silicon Laboratories IncorporatedAustinUSA
  4. 4.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations