Mechanical Design and Control of Compliant Leg for a Quadruped Robot

  • Michał Zieliński
  • Dominik BelterEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 743)


In this paper, we propose a new mammal-like mechanical design of the compliant robotic leg. We propose the application of elastic components to reduce the mechanical impact during landing phase and protect the gearboxes of the servomotors. We also use the elastic tendon which stores the energy in springs. The stored energy is then released at the beginning of the flight phase to increase the height of the jump. We propose and verify the dynamic model of the leg. Finally, in the series of experiments, we show the mechanical properties of the leg.


Legged robots Serial Elastic Actuators Elastic tendon 


  1. 1.
    Ates, S., Sluiter, V.I., Lammertse, P., Stienen, A.H.A.: ServoSEA concept: cheap, miniature series-elastic actuators for orthotic, prosthetic and robotic hands. In: International Conference on Biomedical Robotics and Biomechatronics, pp. 752–757 (2014)Google Scholar
  2. 2.
    Belter, D., Walas, K.: A compact walking robot – flexible research and development platform. In: Szewczyk, R., et al. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, vol. 267, pp. 343–352 (2014)Google Scholar
  3. 3.
    Carpino, G., Accoto, D., Sergi, F., Tagliamonte, N.L., Guglielmelli, E.: A novel compact torsional spring for series elastic actuators for assistive wearable robots. J. Mech. Des. 134(12), 121002 (2012)CrossRefGoogle Scholar
  4. 4.
    Bar-Cohen, Y.: Biomimetics: Biologically Inspired Technologies. CRC Press, Boca Raton (2006)Google Scholar
  5. 5.
    Hutter, M., Remy, C.D., Hoepflinger, M.H., Siegwart, R.: High compliant series elastic actuation for the robotic leg StarlETH. In: International Conference on Climbing and Walking Robots (CLAWAR), pp. 507–514 (2011)Google Scholar
  6. 6.
    Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M.H., Remy, C.D., Siegwart, R.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: International Conference on Climbing and Walking Robots (CLAWAR), pp. 483–490 (2012)Google Scholar
  7. 7.
    Hutter, M., Gehring, C., Höpflinger, M.A., Blösch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2016)CrossRefGoogle Scholar
  8. 8.
    Iida, F., Gomez, G., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings International Conference on Advanced Robotics, pp. 229–235 (2005)Google Scholar
  9. 9.
    Hurst, J.W., Rizzi, A., Hobbelen, D.: Series elastic actuation: potential and pitfalls. In: International Conference on Climbing and Walking Robots (2004)Google Scholar
  10. 10.
    Lagoda, C., Schouten, A.C., Stienen, A.H.A., Hekman, E.E.G., van der Kooij, H.: Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In: International Conference on Biomedical Robotics and Biomechatronics, pp. 21–26 (2010)Google Scholar
  11. 11.
    Raibert, M.H., Brown, H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res. 3, 75–92 (1984)CrossRefGoogle Scholar
  12. 12.
    Shkolnik, A., Levashov, M., Manchester, I.R., Tedrake, R.: Bounding on rough terrain with the LittleDog robot. Int. J. Robot. Res. 30(2), 192–215 (2011)CrossRefGoogle Scholar
  13. 13.
    Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with Cheetahcub, a compliant quadruped robot. Int. J. Robot. Res. 32(8), 933–951 (2013)CrossRefGoogle Scholar
  14. 14.
    Spröwitz, A., Ajallooeian, M., Tuleu, A., Ijspeert, A.J.: Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. Front. Comput. Neurosci. 8(27), 1–13 (2014)Google Scholar
  15. 15.
    Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D.: A compact soft actuator unit for small scale human friendly robots. In: IEEE International Conference on Robotics and Automation, pp. 4356–4362 (2009)Google Scholar
  16. 16.
    Wyffels, F., D’Haene, M., Waegeman, T., Caluwaerts, K., Nunes, C., Schrauwen, B.: Realization of a passive compliant robot dog. In: Proceedings of the International Conference on Biomedical Robotics and Biomechatronics, pp. 882–886 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Control, Robotics and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations