Skip to main content

New Parameter Identification Method for the Fractional Order, State Space Model of Heat Transfer Process

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Abstract

In the paper parameter identification problem for model of heat transfer process is considered. The system under consideration is described by fractional order, state equation using Caputo operator. The parameters of the model are identified via optimization of the MSE cost function, describing the difference between step responses of real experimental plant and tested model. The proposed by authors optimization method consists in associating PSO and simplex algorithms. Results of numerical tests point that the proposed method assures good accuracy with short duration of calculations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Caponetto, R., Dongola, G., Fortuna, l., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72, World Scientific Publishing (2010)

    Google Scholar 

  2. Chen, Y.Q.: Oustaloup Recursive Approximation for Fractional Order Differentiators. MathWorks, Inc., Matlab Central File Exchange (2003)

    Google Scholar 

  3. Das, S.: Functional Fractional Calculus For System Identification And Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Das, S., Pan, I.: Fractional Order Signal Processing. Briefs in Applied Sciences and Technology. Springer (2012). https://doi.org/10.1007/978-3-642-23117-9-2

  5. Das, S., Pan, I.: Intelligent Fractional Order Systems and Control: An Introduction. Springer (2013)

    Google Scholar 

  6. Dlugosz, M., Skruch, P.: The application of fractional-order models for thermal process modelling inside buildings. J. Build. Phys. I 13, 1–13 (2015)

    Google Scholar 

  7. Djouambi, A., Charef, A., Besancon, A.V.: Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. Int. J. Appl. Math. Comput. Sci. 17(4), 455–462 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dzieliski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  9. Garrappa, R., Maione, G.: Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. In: Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M. (eds.) Theory and Applications of Non-integer Order Systems, 8th Conference on Non-integer Order Calculus and Its Applications, Zakopane, Poland, 20–21 Sept 2016. Lecture Notes in Electrical Engineering, vol. 407, pp. 429–440 (2017). ISBN 978-3-319-45473-3

    Google Scholar 

  10. Gupta, R., Gairola, S., Diwiedi, S.: Fractional order system identification and controller design using PSO. In: 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with Their Impact on Humanity (CIPECH)28–29 November 2014, Ghaziabad, India, pp. 149–153 (2014)

    Google Scholar 

  11. Gupta, M., Yadav, R.: New improved fractional order differentiator models based on optimized digital differentiators. Sci. World J. 2014 (2014). 11 p., Article ID 741395

    Google Scholar 

  12. Isermann, R., Muenchhof, M.: Identification of Dynamic Systems: An Introduction with Applications. Springer (2011)

    Google Scholar 

  13. Kaczorek, T.: Practical stability of positive fractional discrete-time systems. Bull. Pol. Acad. Sci. Tech. Sci. 56(4), 313–317 (2008)

    Google Scholar 

  14. Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer (2011)

    Google Scholar 

  15. Kaczorek, T.: Comparison of approximation methods of positive stable continuous-time linear systems by positive stable discrete-time systems. Arch. Electr. Eng. 62(2), 345–355 (2013)

    MATH  Google Scholar 

  16. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)

    MATH  Google Scholar 

  17. Kennedy, J., Eberhardt, R.: Particle Swarm Optimization, 0-7803-2768-3/95/$4.00 0 1995, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  18. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer (2010)

    Google Scholar 

  19. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maione, G.: Continued fractions approximation of the impulse response of fractional-order dynamic systems. IET Control Theory Appl. 2(7), 564–572 (2008)

    Article  MathSciNet  Google Scholar 

  21. Maione, G.: High-speed digital realizations of fractional operators in the delta domain. IEEE Trans. Autom. Control 56(3), 697–702 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. MathWorks Documentation. https://www.mathworks.com/help/matlab/ref/fminsearch.html

  23. MathWorks Documentation. https://www.mathworks.com/help/matlab/ref/tic.html

  24. Merrikh-Bayat, F.: Rules for selecting the parameters of Oustaloup recursive approximation for the simulation of linear feedback systems containing PI\(\lambda \) D\(\mu \) controller. Commun. Nonlin. Sci. Numer. Simul. 17, 1852–1861 (2012)

    Article  MathSciNet  Google Scholar 

  25. Mitkowski, W.: Approximation of fractional Diffusion-Wave equation. Acta Mechanica et Automatica 5(2), 65–68 (2011)

    MathSciNet  Google Scholar 

  26. Mitkowski, W., Obraczka, A.: Simple identification of fractional differential equation. Solid State Phenom. 180, 331–338 (2012)

    Article  Google Scholar 

  27. Mitkowski, W., Skruch, P.: Fractional-order models of the supercapacitors in the form of RC ladder networks. Bull. Pol. Acad. Sci. Tech. Sci. 61(3), 581–587 (2013)

    Google Scholar 

  28. Liu, F., Li, X., Liu, X., Tang, Y.: Parameter identification of fractional-order chaotic system with time delay via multi-selection differential evolution. Syst. Sci. Control Eng. 5(1), 42–48 (2017)

    Article  Google Scholar 

  29. Obraczka, A., Mitkowski, W.: The comparison of parameter identification methods for fractional partial differential equation. Solid State Phenom. 210, 265–270 (2014)

    Article  Google Scholar 

  30. Oprzedkiewicz, K.: A Strejc model-based, semi- fractional (SSF) transfer function model. Autom. AGH UST 16(2), 145–154 (2012). http://journals.bg.agh.edu.pl/AUTOMAT/2012.16.2/automat.2012.16.2.145.pdf

    Google Scholar 

  31. Oprzedkiewicz, K., Dziedzic, K.: A tuning of a fractional order PID controller with the use of particle swarm optimization method. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing: 16th International Conference: ICAISC 2017 Zakopane, Poland, June 11–15, 2017: proceedings (Lecture Notes in Computer Science; ISSN 0302–9743. Lecture Notes in Artificial Intelligence; LNAI 10245), pp. 394–407. Springer (2017)

    Google Scholar 

  32. Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Application of fractional order transfer functions to modeling of high order systems. In: MMAR 2015: 20th International Conference on Methods and Models in Automation and Robotics: 24–27 August 2015, Midzyzdroje, Poland: Program, Abstracts, Proceedings (CD) (2015). Szczecin: ZAPOL Sobczyk Sp.j., [2015] + CD. Dod. 978–1, ISBN: 978-1-4799-8701-6-4799-8700-9. ISBN: 978-83-7518-756-4

    Google Scholar 

  33. Oprzedkiewicz, K., Mitkowski, W., Gawin, E.: Parameter identification for non integer order, state space models of heat plant. In: MMAR 2016: 21st International Conference on Methods and Models in Automation and Robotics: 29 August–01 September 2016, Midzyzdroje, Poland, pp. 184–188 (2016). ISBN: 978-1-5090-1866-6, ISBN: 978-837518-791-5

    Google Scholar 

  34. Oprzedkiewicz, K., Gawin, E., Mitkowski, W.: Modeling heat distribution with the use of a non-integer order, state space model. Int. J. Appl. Math. Comput. Sci. 26(4), 749–756 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oprzedkiewicz, K., Gawin, E.: Non integer order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016). ISSN 1230-2384. https://www-1degruyter-1com-1atoz.wbg2.bg.agh.edu.pl/downloadpdf/j/acsc.2016.26.issue-2/acsc-2016-0015/acsc-2016-0015.xml

  36. Oprzedkiewicz, K., Kolacz, T.: A non integer order model of frequency speed control in AC motor. In: Szewczyk, R., Zielinski, C. (eds.) Advances in Intelligent Systems and Computing, vol. 440, pp. 287–298. Springer, Switzerland (2016)

    Google Scholar 

  37. Ostalczyk, P.: Discrete Fractional Calculus: Applications in Control and Image Processing. Series in Computer Vision, vol. 4, World Scientific Publishing (2016)

    Google Scholar 

  38. Othman, M.Z., Al-Sabawi, L.A.: Fractional order system identification based on genetic algorithms. J. Eng. Sci. Technol. 8(6), 713–722 (2013)

    Google Scholar 

  39. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. I 47(1), 25–39 (2000)

    Google Scholar 

  40. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  41. Podlubny, I.: Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. 3(4), 359–386 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Stanislawski, R., Latawiec, K.J., Lukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grnwald-Letnikov fractional-order difference. Math. Prob. Eng. 2015 (2015). 10 p., Article ID 512104. https://doi.org/10.1155/2015/512104

  43. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzędkiewicz, K., Dziedzic, K. (2018). New Parameter Identification Method for the Fractional Order, State Space Model of Heat Transfer Process. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics