Skip to main content

Young Diagrams and q-Binomial Coefficients

  • Chapter
  • First Online:
Algebraic Combinatorics

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 4528 Accesses

Abstract

A partition λ of an integer n ≥ 0 is a sequence λ = (λ 1, λ 2, … ) of integers λ i  ≥ 0 satisfying λ 1 ≥ λ 2 ≥⋯ and ∑i≥1 λ i  = n. Thus all but finitely many λ i are equal to 0. Each λ i  > 0 is called a part of λ. We sometimes suppress 0’s from the notation for λ, e.g., (5, 2, 2, 1), (5, 2, 2, 1, 0, 0, 0), and (5, 2, 2, 1, 0, 0, … ) all represent the same partition λ (of 10, with four parts). If λ is a partition of n, then we denote this by λ ⊢ n or |λ| = n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, 1976)

    MATH  Google Scholar 

  2. G.E. Andrews, K. Eriksson, Integer Partitions (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  3. E.B. Dynkin, Some properties of the weight system of a linear representation of a semisimple Lie group (in Russian). Dokl. Akad. Nauk SSSR (N.S) 71, 221–224 (1950)

    Google Scholar 

  4. E.B. Dynkin, The maximal subgroups of the classical groups. Am. Math. Soc. Transl. Ser. 2 6, 245–378 (1957); Translated from Trudy Moskov. Mat. Obsc. 1, 39–166

    Google Scholar 

  5. K.M. O’Hara, Unimodality of Gaussian coefficients: a constructive proof. J. Comb. Theor. Ser. A 53, 29–52 (1990)

    Article  MathSciNet  Google Scholar 

  6. W.V. Parker, The matrices AB and BA. Am. Math. Mon. 60, 316 (1953); Reprinted in Selected Papers on Algebra, ed. by S. Montgomery et al. (Mathematical Association of America, Washington), pp. 331–332

    MathSciNet  MATH  Google Scholar 

  7. R.A. Proctor, A solution of two difficult combinatorial problems with linear algebra. Am. Math. Mon. 89, 721–734 (1982)

    Article  MathSciNet  Google Scholar 

  8. J. Schmid, A remark on characteristic polynomials. Am. Math. Mon. 77, 998–999 (1970); Reprinted in Selected Papers on Algebra, ed. by S. Montgomery et al. (Mathematical Association of America, Washington), pp. 332-333

    Article  MathSciNet  Google Scholar 

  9. R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebr. Discrete Meth. 1, 168–184 (1980)

    Article  MathSciNet  Google Scholar 

  10. R. Stanley, Enumerative Combinatorics, vol. 1, 2nd edn. (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  11. J.J. Sylvester, Proof of the hitherto undemonstrated fundamental theorem of invariants. Philos. Mag. 5, 178–188 (1878); Collected Mathematical Papers, vol. 3 (Chelsea, New York, 1973), pp. 117–126

    Google Scholar 

  12. D. Zeilberger, Kathy O’Hara’s constructive proof of the unimodality of the Gaussian polynomials. Am. Math. Mon. 96, 590–602 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stanley, R.P. (2018). Young Diagrams and q-Binomial Coefficients. In: Algebraic Combinatorics. Undergraduate Texts in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-77173-1_6

Download citation

Publish with us

Policies and ethics