Skip to main content

Cell-Free Scaffolds for the Treatment of Chondral and Osteochondral Lesions

  • Chapter
  • First Online:
Cartilage Restoration
  • 778 Accesses

Abstract

In the last two decades, the achievements of tissue engineering provided the surgeons with a pool of new and promising options for the treatment of cartilage defects. Cell-based regenerative techniques, also in combination with various biomaterials, were proposed to improve the tissue quality and the clinical outcomes. Despite several investigations that showed satisfactory clinical results in the long term, the need for two surgical procedures and the related costs limited their use. Thus, the possibility to avoid any cell augmentation by implanting biomaterials able to exploit the patient self-regenerative potential in situ was explored. Since then, several matrices were successfully introduced in the clinical use, and their intrinsic ability to promote tissue regeneration produced positive results in terms of clinical improvement. Also, some biomaterials were combined to reproduce the requirements of both bone and cartilage, in order to address osteochondral defects. This narrative review aims at resuming the state of the art concerning the clinical use of acellular scaffolds for the treatment of cartilage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madry H, Kon E, Condello V, et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):1753–62.

    Article  PubMed  Google Scholar 

  2. Andrade R, Vasta S, Pereira R, et al. Knee donor-site morbidity after mosaicplasty – a systematic review. J Exp Orthop. 2016;3(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  4. Goyal D, Goyal A, Keyhani S, et al. Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy. 2013;29(11):1872–8.

    Article  PubMed  Google Scholar 

  5. Peterson L, Vasiliadis HS, Brittberg M, et al. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med. 2010;38(6):1117–24.

    Article  PubMed  Google Scholar 

  6. Aldrian S, Zak L, Wondrasch B, et al. Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: a prospective follow-up at a minimum of 10 years. Am J Sports Med. 2014;42(11):2680–8.

    Article  PubMed  Google Scholar 

  7. Gille J, Behrens P, Schulz AP, et al. Matrix-associated autologous chondrocyte implantation: a clinical follow-up at 15 years. Cartilage. 2016;7(4):309–15.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gille J, Kunow J, Boisch L, et al. Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage defects: a histological and biomechanical study in sheep. Cartilage. 2010;1(1):29–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pape D, Filardo G, Kon E, et al. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):448–62.

    Article  PubMed  Google Scholar 

  10. Kon E, Filardo G, Perdisa F, et al. A one-step treatment for chondral and osteochondral knee defects: clinical results of a biomimetic scaffold implantation at 2 years of follow-up. J Mater Sci Mater Med. 2014;25(10):2437–44.

    Article  CAS  PubMed  Google Scholar 

  11. Kusano T, Jakob RP, Gautier E, et al. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc. 2012;20(10):2109–15.

    Article  PubMed  Google Scholar 

  12. Schiavone Panni A, Cerciello S, Vasso M. The manangement of knee cartilage defects with modified amic technique: preliminary results. Int J Immunopathol Pharmacol. 2011;24(1 Suppl 2):149–52.

    Article  CAS  PubMed  Google Scholar 

  13. Gille J, Schuseil E, Wimmer J, et al. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1456–64.

    Article  CAS  PubMed  Google Scholar 

  14. Gille J, Behrens P, Volpi P, et al. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. Arch Orthop Trauma Surg. 2013;133(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  15. Stanish WD, McCormack R, Forriol F, et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–50.

    Article  PubMed  Google Scholar 

  16. Shive MS, Stanish WD, McCormack R, et al. BST-CarGel(R) treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6(2):62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg. 2010;76(2):260–3.

    PubMed  Google Scholar 

  18. Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc. 2011;19(8):1316–9.

    Article  PubMed  Google Scholar 

  19. Piontek T, Ciemniewska-Gorzela K, Szulc A, et al. All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(5):922–5.

    Article  PubMed  Google Scholar 

  20. Gobbi A, Scotti C, Karnatzikos G, et al. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2494–501.

    Article  PubMed  Google Scholar 

  21. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44(11):2846–54.

    Article  PubMed  Google Scholar 

  22. Rodriguez-Vazquez M, Vega-Ruiz B, Ramos-Zuniga R et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015:821279.

    Article  CAS  Google Scholar 

  23. Steinwachs MR, Waibl B, Mumme M. Arthroscopic treatment of cartilage lesions with microfracture and BST-CarGel. Arthrosc Tech. 2014;3(3):e399–402.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Methot S, Changoor A, Tran-Khanh N, et al. Osteochondral biopsy analysis demonstrates that BST-CarGel treatment improves structural and cellular characteristics of cartilage repair tissue compared with microfracture. Cartilage. 2016;7(1):16–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trattnig S, Ohel K, Mlynarik V, et al. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology – GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil. 2015;23(12):2224–32.

    Article  CAS  Google Scholar 

  26. Fortier LA, Chapman HS, Pownder SL, et al. BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss. Am J Sports Med. 2016;44(9):2366–74.

    Article  PubMed  Google Scholar 

  27. Niederauer GG, Slivka MA, Leatherbury NC, et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials. 2000;21(24):2561–74.

    Article  CAS  PubMed  Google Scholar 

  28. Gelber PE, Batista J, Millan-Billi A, et al. Magnetic resonance evaluation of TruFit(R) plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue. Knee. 2014;21(4):827–32.

    Article  PubMed  Google Scholar 

  29. Bekkers JE, Bartels LW, Vincken KL, et al. Articular cartilage evaluation after TruFit plug implantation analyzed by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Am J Sports Med. 2013;41(6):1290–5.

    Article  PubMed  Google Scholar 

  30. Quarch VM, Enderle E, Lotz J, et al. Fate of large donor site defects in osteochondral transfer procedures in the knee joint with and without TruFit plugs. Arch Orthop Trauma Surg. 2014;134(5):657–66.

    Article  PubMed  Google Scholar 

  31. Dhollander AA, Liekens K, Almqvist KF, et al. A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures. Arthroscopy. 2012;28(2):225–33.

    Article  PubMed  Google Scholar 

  32. Slivka MA, Leatherbury NC, Kieswetter K, et al. Porous, resorbable, fiber-reinforced scaffolds tailored for articular cartilage repair. Tissue Eng. 2001;7(6):767–80.

    Article  CAS  PubMed  Google Scholar 

  33. Barber FA, Dockery WD. A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy. 2011;27(1):60–4.

    Article  PubMed  Google Scholar 

  34. Carmont MR, Carey-Smith R, Saithna A, et al. Delayed incorporation of a TruFit plug: perseverance is recommended. Arthroscopy. 2009;25(7):810–4.

    Article  PubMed  Google Scholar 

  35. Bedi A, Foo LF, Williams RJ 3rd, et al. The maturation of synthetic scaffolds for osteochondral donor sites of the knee: an MRI and T2-mapping analysis. Cartilage. 2010;1(1):20–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hindle P, Hendry JL, Keating JF, et al. Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1235–40.

    Article  PubMed  Google Scholar 

  37. Tampieri A, Sandri M, Landi E, et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials. 2008;29(26):3539–46.

    Article  CAS  PubMed  Google Scholar 

  38. Delcogliano M, de Caro F, Scaravella E, et al. Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1260–9.

    PubMed  Google Scholar 

  39. Kon E, Filardo G, Di Martino A, et al. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med. 2014;42(1):158–65.

    Article  PubMed  Google Scholar 

  40. Marcacci M, Zaffagnini S, Kon E, et al. Unicompartmental osteoarthritis: an integrated biomechanical and biological approach as alternative to metal resurfacing. Knee Surg Sports Traumatol Arthrosc. 2013;21(11):2509–17.

    Article  CAS  PubMed  Google Scholar 

  41. Filardo G, Kon E, Perdisa F, et al. Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee. 2013;20(6):570–6.

    Article  CAS  PubMed  Google Scholar 

  42. Filardo G, Kon E, Di Martino A, et al. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med. 2013;41(8):1786–93.

    Article  PubMed  Google Scholar 

  43. Di Martino A, Kon E, Perdisa F et al. Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: results at 24 months of follow-up. Injury. 2015;46(Suppl 8):S33–S38.

    Article  PubMed  Google Scholar 

  44. Kon E, Delcogliano M, Filardo G, et al. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med. 2011;39(6):1180–90.

    Article  PubMed  Google Scholar 

  45. Perdisa F, Filardo G, Sessa A, et al. One-step treatment for patellar cartilage defects with a cell-free osteochondral scaffold: a prospective clinical and MRI evaluation. Am J Sports Med. 2017;45(7):1581–8.

    Article  PubMed  Google Scholar 

  46. Berruto M, Delcogliano M, de Caro F, et al. Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med. 2014;42(7):1607–17.

    Article  PubMed  Google Scholar 

  47. Kon E, Filardo G, Perdisa F, et al. Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop. 2014;1(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kon E, Filardo G, Shani J, et al. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model. J Orthop Surg Res. 2015;10:81.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Joshi N, Reverte-Vinaixa M, Diaz-Ferreiro EW, et al. Synthetic resorbable scaffolds for the treatment of isolated patellofemoral cartilage defects in young patients: magnetic resonance imaging and clinical evaluation. Am J Sports Med. 2012;40(6):1289–95.

    Article  PubMed  Google Scholar 

  50. Kon E, Delcogliano M, Filardo G, et al. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury. 2010;41(7):693–701.

    Article  CAS  PubMed  Google Scholar 

  51. Berruto M, Ferrua P, Uboldi F, et al. Can a biomimetic osteochondral scaffold be a reliable alternative to prosthetic surgery in treating late-stage SPONK? Knee. 2016;23(6):936–41.

    Article  CAS  PubMed  Google Scholar 

  52. Christensen BB, Foldager CB, Jensen J, et al. Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2380–7.

    Article  PubMed  Google Scholar 

  53. Dhollander A, Verdonk P, Almqvist KF, et al. Clinical and MRI outcome of an osteochondral scaffold plug for the treatment of cartilage lesions in the knee. Acta Orthop Belg. 2015;81(4):629–38.

    PubMed  Google Scholar 

  54. Kon E, Drobnic M, Davidson PA, et al. Chronic posttraumatic cartilage lesion of the knee treated with an acellular osteochondral-regenerating implant: case history with rehabilitation guidelines. J Sport Rehabil. 2014;23(3):270–5.

    Article  PubMed  Google Scholar 

  55. Kon E, Robinson D, Verdonk P, et al. A novel aragonite-based scaffold for osteochondral regeneration: early experience on human implants and technical developments. Injury. 2016;47(Suppl 6):S27–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Kon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romandini, I., Perdisa, F., Filardo, G., Kon, E. (2018). Cell-Free Scaffolds for the Treatment of Chondral and Osteochondral Lesions. In: Farr, J., Gomoll, A. (eds) Cartilage Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-77152-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77152-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77151-9

  • Online ISBN: 978-3-319-77152-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics