Advertisement

All Optical Label-Free Detection, Imaging and Tracking of Single Proteins

  • Jaime Ortega Arroyo
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter details a proof of principle study with the molecular motor myosin 5a heavy meromyosin, which demonstrates that interferometric scattering microscopy can be used as a truly label-free all-optical bio-sensing platform operating at the single-molecule level.

References

  1. 1.
    Ortega Arroyo, J., et al.: Label-free, all-optical detection, imaging, and tracking of a single protein. Nano. Lett. 14, 2065–2070 (2014)Google Scholar
  2. 2.
    Nie, S., Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)CrossRefGoogle Scholar
  3. 3.
    Thacker, V.V., et al.: DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 5, 3448 (2014)CrossRefGoogle Scholar
  4. 4.
    Zijlstra, P., Paulo, P.M.R., Orrit, M.: Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7, 379–382 (2012)CrossRefGoogle Scholar
  5. 5.
    Ament, I., Prasad, J., Henkel, A., Schmachtel, S., Sönnichsen, C.: Single unlabeled protein detection on individual plasmonic nanoparticles. Nano. Lett. 12, 1092–1095 (2012)CrossRefGoogle Scholar
  6. 6.
    Beuwer, M.A., Prins, M.W.J., Zijlstra, P.: Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. Nano. Lett. 15, 3507–3511 (2015)CrossRefGoogle Scholar
  7. 7.
    Dantham, V.R., et al.: Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavitys. Nano. Lett. 13, 3347–3351 (2013)CrossRefGoogle Scholar
  8. 8.
    Baaske, M.D., Foreman, M.R., Vollmer, F.: Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014)CrossRefGoogle Scholar
  9. 9.
    Kukura, P., Celebrano, M., Renn, A., Sandoghdar, V.: Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010)CrossRefGoogle Scholar
  10. 10.
    Chong, S., Min, W., Xie, X.S.: Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010)CrossRefGoogle Scholar
  11. 11.
    Gaiduk, A., Yorulmaz, M., Ruijgrok, P.V., Orrit, M.: Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330, 353–356 (2010)CrossRefGoogle Scholar
  12. 12.
    Sellers, J.R., Veigel, C.: Walking with myosin V. Curr. Opin. Cell. Biol. 18, 68–73 (2006)CrossRefGoogle Scholar
  13. 13.
    Spudich, J.A., Watt, S.: The regulation of rabbit skeletal muscle contraction I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971)Google Scholar
  14. 14.
    Wang, F., et al.: Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J. Biol. Chem. 275, 4329–4335 (2000)CrossRefGoogle Scholar
  15. 15.
    Kukura, P., et al.: High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009)CrossRefGoogle Scholar
  16. 16.
    Kubitscheck, U., Kückmann, O., Kues, T., Peters, R.: Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179 (2000)CrossRefGoogle Scholar
  17. 17.
    Yildiz, A., et al.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)CrossRefGoogle Scholar
  18. 18.
    Rief, M., et al.: Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000)CrossRefGoogle Scholar
  19. 19.
    Snyder, G.E., Sakamoto, T., Hammer III, J.A., Sellers, J.R., Selvin, P.R.: Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys. J. 87, 1776–1783 (2004)CrossRefGoogle Scholar
  20. 20.
    Baker, J.E., et al.: Myosin V processivity: multiple kinetic pathways for head-to-head coordination. Proc. Natl. Acad. Sci. USA 101, 5542–5546 (2004)CrossRefGoogle Scholar
  21. 21.
    Perkins, T.T.: Ångström-precision optical traps and applications*. Annu. Rev Biophys 43, 279–302 (2014)CrossRefGoogle Scholar
  22. 22.
    Piliarik, M., Sandoghdar, V.: Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014)CrossRefGoogle Scholar
  23. 23.
    Andrecka, J., Spillane, K.M., Ortega Arroyo, J., Kukura, P.: Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano. 7, 10662–10670 (2013)Google Scholar
  24. 24.
    Cohen, S.I.A., et al.: A molecular chaperone breaks the catalytic cycle that generates toxic A\(\beta \) oligomers. Nat. Struct. Mol. Biol. 22, 207–213 (2015)CrossRefGoogle Scholar
  25. 25.
    Dumont, E.L.P., Do, C., Hess, H.F.: Molecular wear of microtubules propelled by surface-adhered kinesins. Nat. Nanotechnol. 10, 166–169 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICFO—The Institute of Photonic SciencesBarcelonaSpain

Personalised recommendations