Structural Dynamics of Myosin 5a

Part of the Springer Theses book series (Springer Theses)


This chapter provides the results obtained from single-molecule studies using iSCAT on a construct of myosin 5a with an N-terminal biotin ligand, which was conjugated with different sized gold nanoparticles, and a C-terminal GFP ligand.


  1. 1.
    Andrecka, J., et al.: Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4, e05413 (2015)Google Scholar
  2. 2.
    Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007)CrossRefGoogle Scholar
  3. 3.
    Vale, R.D.: Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell. Biol. 163, 445–450 (2003)CrossRefGoogle Scholar
  4. 4.
    Mehta, A.D., et al.: Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999)CrossRefGoogle Scholar
  5. 5.
    Rief, M., et al.: Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000)CrossRefGoogle Scholar
  6. 6.
    Forkey, J.N., Quinlan, M.E., Alexander Shaw, M., Corrie, J.E.T., Goldman, Y.E.: Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003)CrossRefGoogle Scholar
  7. 7.
    Yildiz, A., et al.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)CrossRefGoogle Scholar
  8. 8.
    Snyder, G.E., Sakamoto, T., Hammer III, J.A., Sellers, J.R., Selvin, P.R.: Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys. J. 87, 1776–1783 (2004)CrossRefGoogle Scholar
  9. 9.
    Warshaw, D.M., et al.: Differential labeling of myosin v heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005)CrossRefGoogle Scholar
  10. 10.
    Sellers, J.R., Veigel, C.: Walking with myosin V. Curr. Opin. Cell Biol. 18, 68–73 (2006)CrossRefGoogle Scholar
  11. 11.
    Hammer III, J.A., Sellers, J.R.: Walking to work: roles for class V myosins as cargo transporters. Nat. Rev. Mol. Cell Biol. 13, 13–26 (2011)CrossRefGoogle Scholar
  12. 12.
    De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M., Sweeney, H.L.: The kinetic mechanism of myosin V. Proc. Natl. Acad. Sci. USA 13726–13731 (1999)Google Scholar
  13. 13.
    De La Cruz, E.M., Ostap, E.M.: Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16, 61–67 (2004)CrossRefGoogle Scholar
  14. 14.
    Rosenfeld, S.S., Sweeney, H.L.: A model of myosin V processivity. J. Biol. Chem. 279, 40100–40111 (2004)CrossRefGoogle Scholar
  15. 15.
    Sakamoto, T., Webb, M.R., Forgacs, E., White, H.D., Sellers, J.R.: Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008)CrossRefGoogle Scholar
  16. 16.
    Forgacs, E., et al.: Kinetics of ADP dissociation from the trail and lead heads of actomyosin V following the power stroke. J. Biol. Chem. 283, 766–773 (2008)CrossRefGoogle Scholar
  17. 17.
    Coureux, P.D., et al.: A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–423 (2003)CrossRefGoogle Scholar
  18. 18.
    Coureux, P.D., Sweeney, H.L., Houdusse, A.: Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J. (2004)Google Scholar
  19. 19.
    Cecchini, M., Allosteric, A.H.M.K.: Communication in myosin V: from small conformational changes to large directed movements. PLoS Comput. Biol. 4, e1000129 (2008)CrossRefGoogle Scholar
  20. 20.
    Sweeney, H.L., Houdusse, A.: Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010)CrossRefGoogle Scholar
  21. 21.
    Preller, M., Holmes, K.C.: The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 70, 651–660 (2013)CrossRefGoogle Scholar
  22. 22.
    Volkmann, N., et al.: The structural basis of myosin V processive movement as revealed by electron cryomicroscopy. Mol. Cell 19, 595–605 (2005)CrossRefGoogle Scholar
  23. 23.
    Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R., Molloy, J.E.: The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2001)CrossRefGoogle Scholar
  24. 24.
    Craig, E.M., Linke, H.: Mechanochemical model for myosin V. Proc. Natl. Acad. Sci. USA 106, 18261–18266 (2009)CrossRefGoogle Scholar
  25. 25.
    Hinczewski, M., Tehver, R., Thirumalai, D.: Design principles governing the motility of myosin V. Proc. Natl. Acad. Sci. USA 110, E4059–E4068 (2013)CrossRefGoogle Scholar
  26. 26.
    Dunn, A.R., Spudich, J.A.: Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007)CrossRefGoogle Scholar
  27. 27.
    Beausang, J.F., Shroder, D.Y., Nelson, P.C., Goldman, Y.E.: Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy. Biophys. J. 104, 1263–1273 (2013)CrossRefGoogle Scholar
  28. 28.
    Uemura, S., Higuchi, H., Olivares, A.O., De La Cruz, E.M., Ishiwata, S.: Mechanochemical coupling of two substeps in a single myosin V motor. Nat. Struct. Mol. Biol. 11, 877–883 (2004)CrossRefGoogle Scholar
  29. 29.
    Cappello, G., et al.: Myosin V stepping mechanism. Proc. Natl. Acad. Sci. USA 104, 15328–15333 (2007)CrossRefGoogle Scholar
  30. 30.
    Sellers, J.R., Veigel, C.: Direct observation of the myosin-Va power stroke and its reversal. Nat. Struct. Mol. Biol. 17, 590–595 (2010)CrossRefGoogle Scholar
  31. 31.
    Okada, T., et al.: The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochem. Biophys. Res. Commun. 354, 379–384 (2007)CrossRefGoogle Scholar
  32. 32.
    Shiroguchi, K., Kinosita Jr., K.: Myosin V walks by lever action and brownian motion. Science 316, 1208–1212 (2007)CrossRefGoogle Scholar
  33. 33.
    Karagiannis, P., Ishii, Y., Yanagida, T.: Molecular machines like myosin use randomness to behave predictably. Chem. Rev. 114, 3318–3334 (2014)CrossRefGoogle Scholar
  34. 34.
    Shiroguchi, K., et al.: Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin. Plos Biol. 9, e1001031 (2011)CrossRefGoogle Scholar
  35. 35.
    Fujita, K., Iwaki, M., Iwane, A.H., Marcucci, L., Yanagida, T.: Switching of myosin-V motion between the lever-arm swing and brownian search-and-catch. Nat. Commun. 3, 956 (2012)CrossRefGoogle Scholar
  36. 36.
    Spudich, J.A., Watt, S.: The regulation of rabbit skeletal muscle contraction I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J. Biol. Chem. 246, 4866–4871 (1971)Google Scholar
  37. 37.
    Wang, F., et al.: Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J. Biol. Chem. 275, 4329–4335 (2000)CrossRefGoogle Scholar
  38. 38.
    Dunn, A.R., Spudich, J.A.: Single-molecule gold-nanoparticle tracking. Cold Spring Harb. Protoc. 2011, 1498–1506 (2011)CrossRefGoogle Scholar
  39. 39.
    Ortega Arroyo, J., et al.: Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014)Google Scholar
  40. 40.
    Komori, Y., Iwane, A.H., Yanagida, T.: Myosin-V makes two brownian 90\(^{\circ }\) rotations per 36-nm step. Nat. Struct. Mol. Biol. 14, 968–973 (2007)CrossRefGoogle Scholar
  41. 41.
    Ohmachi, M., et al.: Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012)CrossRefGoogle Scholar
  42. 42.
    Nishikawa, S., et al.: Switch between large hand-over-hand and small inchworm-like steps in myosin VI. Cell 142, 879–888 (2010)CrossRefGoogle Scholar
  43. 43.
    Ries, J., Kaplan, C., Platonova, E., Eghlidi, H.M., Ewers, H.: A simple, versatile method for GFP-based single molecule localization microscopy. Biophys. J. 102, 419A–419A (2012)CrossRefGoogle Scholar
  44. 44.
    Kubitscheck, U., Kückmann, O., Kues, T., Peters, R.: Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179 (2000)CrossRefGoogle Scholar
  45. 45.
    Hua, W., Chung, J., Gelles, J.: Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295, 844–848 (2002)CrossRefGoogle Scholar
  46. 46.
    Blumberg, S., Gajraj, A., Pennington, M.W., Meiners, J.-C.C.: Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy. Biophys. J. 89, 1272–1281 (2005)CrossRefGoogle Scholar
  47. 47.
    Knight, P.J., et al.: Two-headed binding of a processive myosin to F-actin: abstract: nature. Nature 405, 804–807 (2000)CrossRefGoogle Scholar
  48. 48.
    Burgess, S.A., et al.: The prepower stroke conformation of myosin V. J. Cell. Biol. 159, 983–991 (2002)CrossRefGoogle Scholar
  49. 49.
    Oke, O.A., et al.: Influence of lever structure on myosin 5a walking. Proc. Natl. Acad. Sci. USA 107, 2509–2514 (2010)CrossRefGoogle Scholar
  50. 50.
    Syed, S., Snyder, G.E., Franzini-Armstrong, C., Selvin, P.R., Goldman, Y.E.: Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J. 25, 1795–1803 (2006)CrossRefGoogle Scholar
  51. 51.
    Enderlein, J., Toprak, E., Selvin, P.R.: Polarization effect on position accuracy of fluorophore localization. Opt. Express. 14, 8111–8120 (2006)CrossRefGoogle Scholar
  52. 52.
    Kodera, N., Yamamoto, D., Ishikawa, R., Ando, T.: Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010)CrossRefGoogle Scholar
  53. 53.
    Ando, T., Uchihashi, T., Kodera, N.: High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393–414 (2013)CrossRefGoogle Scholar
  54. 54.
    Takagi, Y., et al.: Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. In: Proceedings of the National Academy of Sciences (2014)Google Scholar
  55. 55.
    Liu, A.P., Fletcher, D.A.: Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys. J. (2006)Google Scholar
  56. 56.
    Howard, J.: The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 (1996)CrossRefGoogle Scholar
  57. 57.
    Schindler, T.D., Chen, L., Lebel, P., Nakamura, M., Bryant, Z.: Engineering myosins for long-range transport on actin filaments. Nat. Nanotechnol. 9, 33–38 (2013)CrossRefGoogle Scholar
  58. 58.
    Nakamura, M., et al.: Remote control of myosin and kinesin motors using light-activated gearshifting. Nat. Nanotechnol. 9, 693–697 (2014)CrossRefGoogle Scholar
  59. 59.
    Liber, M., Tomov, T.E., Tsukanov, R., Berger, Y., Nir, E.: A bipedal DNA motor that travels back and forth between two DNA origami tiles. Small 11, 568–575 (2015)CrossRefGoogle Scholar
  60. 60.
    Kalinin, S., Valeri, A., Antonik, M., Felekyan, S., Seidel, C.A.M.: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010)CrossRefGoogle Scholar
  61. 61.
    Manley, S., et al.: High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008)CrossRefGoogle Scholar
  62. 62.
    Cognet, L., Leduc, C., Lounis, B.: Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr. Opin. Chem. Biol. 20, 78–85 (2014)CrossRefGoogle Scholar
  63. 63.
    Krishnan, M., Mojarad, N.M., Kukura, P., Sandoghdar, V.: Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010)CrossRefGoogle Scholar
  64. 64.
    Jin, S., Haggie, P.M., Verkman, A.S.: Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl channels. Biophys. J. 93, 1079–1088 (2007)CrossRefGoogle Scholar
  65. 65.
    Masson, J.-B., et al.: Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106, 74–83 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICFO—The Institute of Photonic SciencesBarcelonaSpain

Personalised recommendations