Anomalous Diffusion Due to Interleaflet Coupling and Molecular Pinning

  • Jaime Ortega Arroyo
Part of the Springer Theses book series (Springer Theses)


This chapter presents the results obtained from a SPT assay on a model membrane system where the lipid and substrate interactions were controlled and characterised. Importantly, by using interferometric scattering microscopy we were able to probe several orders of magnitude in time with sub-nm localisation precision.


  1. 1.
    Spillane, K.M., et al.: High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14, 5390–5397 (2014)CrossRefGoogle Scholar
  2. 2.
    Sourjik, V.: Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12, 569–576 (2004)CrossRefGoogle Scholar
  3. 3.
    Liu, J., Sun, Y., Drubin, D.G., Oster, G.F.: The mechanochemistry of endocytosis. Plos Biol. 7, e1000204 (2009)CrossRefGoogle Scholar
  4. 4.
    Klotzsch, E., et al.: Conformational distribution of surface-adsorbed fibronectin molecules explored by single molecule localization microscopy. Biomater. Sci. 2, 883–892 (2014)CrossRefGoogle Scholar
  5. 5.
    Baumgart, T., Hess, S.T., Webb, W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)CrossRefGoogle Scholar
  6. 6.
    Ewers, H., et al.: GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12, 11–18 (2009)CrossRefGoogle Scholar
  7. 7.
    Wan, C., Kiessling, V., Tamm, L.K.: Coupling of cholesterol-rich lipid phases in asymmetric bilayers. Biochemistry 47, 2190–2198 (2008)CrossRefGoogle Scholar
  8. 8.
    Collins, M.D., Keller, S.L.: Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci. U.S.A. 105, 124–128 (2008)CrossRefGoogle Scholar
  9. 9.
    Honigmann, A., et al.: A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3, e01671 (2014)Google Scholar
  10. 10.
    Eggeling, C., et al.: Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009)CrossRefGoogle Scholar
  11. 11.
    Metzler, R., Jeon, J.-H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16, 24128–24164 (2014)CrossRefGoogle Scholar
  12. 12.
    Saxton, M.J.: Single particle tracking. In: Fundamental Concepts in Biophysics (2009)Google Scholar
  13. 13.
    Yu, C., Guan, J., Chen, K., Bae, S.C., Granick, S.: Single-molecule observation of long jumps in polymer adsorption. ACS Nano 7, 9735–9742 (2013)CrossRefGoogle Scholar
  14. 14.
    Huang, R., et al.: Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576–580 (2011)CrossRefGoogle Scholar
  15. 15.
    Sokolov, I.M.: Models of anomalous diffusion in crowded environments. Soft Matter 8, 9043–9052 (2012)CrossRefGoogle Scholar
  16. 16.
    Tsai, J., Sun, E., Gao, Y., Hone, J.C., Kam, L.C.: Non-brownian diffusion of membrane molecules in nanopatterned supported lipid bilayers. Nano Lett. 8, 425–430 (2008)CrossRefGoogle Scholar
  17. 17.
    Pinaud, F., et al.: Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10, 691–712 (2009)CrossRefGoogle Scholar
  18. 18.
    Mascalchi, P., Haanappel, E., Carayon, K., Mazères, S., Salomé, L.: Probing the influence of the particle in single particle tracking measurements of lipid diffusion. Soft Matter 8, 4462 (2012)CrossRefGoogle Scholar
  19. 19.
    Martin, D.S., Forstner, M.B., Käs, J.A.: Apparent subdiffusion inherent to single particle tracking. Biophys. J. 83, 2109–2117 (2002)CrossRefGoogle Scholar
  20. 20.
    Savin, T., Doyle, P.S.: Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005)CrossRefGoogle Scholar
  21. 21.
    Wawrezinieck, L., Rigneault, H., Marguet, D., Lenne, P.-F.: Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89, 4029–4042 (2005)CrossRefGoogle Scholar
  22. 22.
    Fujiwara, T.K., et al.: Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell. Biol. 157, 1071–1082 (2002)Google Scholar
  23. 23.
    Wieser, S., Moertelmaier, M., Fuertbauer, E., Stockinger, H., Schütz, G.J.: (Un)Confined diffusion of CD59 in the plasma membrane determined by high-resolution single molecule microscopy. Biophys. J. 92, 3719–3728 (2007)CrossRefGoogle Scholar
  24. 24.
    Adler, J., Shevchuk, A.I., Novak, P., Korchev, Y.E., Parmryd, I.: Plasma membrane topography and interpretation of single-particle tracks. Nat. Methods 7, 170–171 (2010)CrossRefGoogle Scholar
  25. 25.
    Sackmann, E.: Supported membranes: scientific and practical applications. Science 271, 43 (1996)CrossRefGoogle Scholar
  26. 26.
    Mueller, V., et al.: STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101, 1651–1660 (2011)CrossRefGoogle Scholar
  27. 27.
    Lingwood, D., Ries, J., Schwille, P., Simons, K.: Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc. Natl. Acad. Sci. U.S.A. 105, 10005–10010 (2008)CrossRefGoogle Scholar
  28. 28.
    Dietrich, C., Volovyk, Z.N., Levi, M., Thompson, N.L., Jacobson, K.: Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10642–10647 (2001)CrossRefGoogle Scholar
  29. 29.
    Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition, vol. 3, pp. 850–855 (2006)Google Scholar
  30. 30.
    Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997)CrossRefGoogle Scholar
  31. 31.
    Kusumi, A., et al.: Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005)CrossRefGoogle Scholar
  32. 32.
    Horvath, L.: The maximum likelihood method for testing changes in the parameters of normal observations. Ann. Statist. 21, 671–680 (1993)CrossRefGoogle Scholar
  33. 33.
    Chen, J., Gupta, A.K.: Testing and locating variance changepoints with application to stock prices. J. Am. Stat. Assoc. 92, 739–747 (1997)CrossRefGoogle Scholar
  34. 34.
    Horvath, L., Steinebach, J.: Testing for changes in the mean or variance of a stochastic process under weak invariance. J. Stat. Plan. Inference 91, 365–376 (2000)CrossRefGoogle Scholar
  35. 35.
    Jin, S., Haggie, P.M., Verkman, A.S.: Single-Particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl channels. Biophys. J. 93, 1079–1088 (2007)CrossRefGoogle Scholar
  36. 36.
    Lindner, M., Nir, G., Vivante, A., Young, I.T., Garini, Y.: Dynamic analysis of a diffusing particle in a trapping potential. Phys. Rev. E 87, 022716 (2013)CrossRefGoogle Scholar
  37. 37.
    DeRosa, R.L., Schader, P.A., Shelby, J.E.: Hydrophilic nature of silicate glass surfaces as a function of exposure condition. J. Non-Cryst. Solids 331, 32–40 (2003)CrossRefGoogle Scholar
  38. 38.
    Kusumi, A., Shirai, Y.M., Koyama-Honda, I., Suzuki, K.G.N., Fujiwara, T.K.: Hierarchical organization of the plasma membrane: Investigations by single-molecule tracking vs. fluorescence correlation spectroscopy. FEBS Lett. 584, 1814–1823 (2010)CrossRefGoogle Scholar
  39. 39.
    Fedoruk, M., Lutich, A.A., Feldmann, J.: Subdiffraction-limited milling by an optically driven single gold nanoparticle. ACS Nano 5, 7377–7382 (2011)CrossRefGoogle Scholar
  40. 40.
    Arias-Gonzalez, J.R., Nieto-Vesperinas, M.: Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A 20, 1201–1209 (2003)CrossRefGoogle Scholar
  41. 41.
    Sharonov, A., et al.: Lipid diffusion from single molecules of a labeled protein undergoing dynamic association with giant unilamellar vesicles and supported bilayers. Langmuir 24, 844–850 (2008)CrossRefGoogle Scholar
  42. 42.
    Carton, I., Malinina, L., Richter, R.P.: Dynamic modulation of the glycosphingolipid content in supported lipid bilayers by glycolipid transfer protein. Biophys. J. 99, 2947–2956 (2010)CrossRefGoogle Scholar
  43. 43.
    Windisch, B., Bray, D., Duke, T.: Balls and chains–a mesoscopic approach to tethered protein domains. Biophys. J. 91, 2383–2392 (2006)CrossRefGoogle Scholar
  44. 44.
    Shi, J., et al.: GM 1clustering inhibits cholera toxin binding in supported phospholipid membranes. J. Am. Chem. Soc. 129, 5954–5961 (2011)CrossRefGoogle Scholar
  45. 45.
    Seul, M., Subramaniam, S., McConnell, H.M.: Monolayers and bilayers of phospholipids at interfaces: interlayer coupling and phase stability. J. Phys. Chem. 89, 3592–3595 (1985)CrossRefGoogle Scholar
  46. 46.
    Moraille, P., Badia, A.: Nanoscale stripe patterns in phospholipid bilayers formed by the langmuir-blodgett technique. Langmuir 19, 8041–8049 (2003)CrossRefGoogle Scholar
  47. 47.
    Picas, L., Suárez-Germà, C., Teresa Montero, M., Hernández-Borrell, J.: Force spectroscopy study of langmuir-blodgett asymmetric bilayers of phosphatidylethanolamine and phosphatidylglycerol. J. Phys. Chem. B 114, 3543–3549 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICFO—The Institute of Photonic SciencesBarcelonaSpain

Personalised recommendations