Experimental Methods

Part of the Springer Theses book series (Springer Theses)


This chapter outlines the experimental methods used throughout this thesis. All work presented in this chapter was performed by myself.


  1. 1.
    Capitanio, M., Cicchi, R., Pavone, F.S.: Position control and optical manipulation for nanotechnology applications. Eur. Phys. J. B-Condens. Matter Complex Syst. 46, 1–8 (2005)CrossRefGoogle Scholar
  2. 2.
    Janesick, J.R. Photon Transfer. SPIE, 1000 20th Street, Bellingham, WA 98227-0010 USA (2007)Google Scholar
  3. 3.
    Cheung, S., Kamath, C.: Robust background subtraction with foreground validation for urban traffic video. EURASIP J. Appl. Signal Process. (2005)Google Scholar
  4. 4.
    Panahi, S., Sheikhi, S., Hadadan, S.: Evaluation of background subtraction methods. In: Techniques and Applications, Digital Image Computing (2008)Google Scholar
  5. 5.
    Parks, D.H., Fels, S.S.: Evaluation of background subtraction algorithms with post-processing. In: IEEE 5th International Conference on Advanced Video and Signal Based Surveillance (2008)Google Scholar
  6. 6.
    Small, A.R., Parthasarathy, R.: Superresolution localization methods. Annu. Rev. Phys. Chem. (2013)Google Scholar
  7. 7.
    Kechkar, A., Nair, D., Heilemann, M., Choquet, D., Sibarita, J.B.: Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS ONE 8, e62918 (2013)CrossRefGoogle Scholar
  8. 8.
    Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition, vol. 3, pp. 850–855 (2006)Google Scholar
  9. 9.
    Wolter, S., et al.: rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods 9, 1040–1041 (2012)CrossRefGoogle Scholar
  10. 10.
    Parthasarathy, R.: Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat. Methods 9, 724–726 (2012)CrossRefGoogle Scholar
  11. 11.
    Jaqaman, K., et al.: Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008)CrossRefGoogle Scholar
  12. 12.
    Jonker, R., Volgenant, T.: Improving the Hungarian assignment algorithm. Oper. Res. Lett. 5, 171–175 (1986)CrossRefGoogle Scholar
  13. 13.
    Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)CrossRefGoogle Scholar
  14. 14.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem. Comput. Oper. Res. 24, 17–23 (1997)CrossRefGoogle Scholar
  15. 15.
    Gelles, J., Schnapp, B.J., Sheetz, M.P.: Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988)CrossRefGoogle Scholar
  16. 16.
    Mantooth, B.A., Donhauser, Z.J., Kelly, K.F., Weiss, P.S.: Cross-correlation image tracking for drift correction and adsorbate analysis. Rev. Sci. Instrum. 73, 313–317 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICFO—The Institute of Photonic SciencesBarcelonaSpain

Personalised recommendations