Non-fluorescent Single-Molecule Approaches to Optical Microscopy

Part of the Springer Theses book series (Springer Theses)


Parts of this chapter have been adapted from the following publication: Ortega Arroyo, Kukura (Phys Chem Chem Phys 14:15625–15636, 2012). [1] and are copyright (2012) by the Royal Chemistry Society. All work presented in this chapter was performed by myself.


  1. 1.
    Ortega Arroyo, J., Kukura, P.: Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636 (2012)CrossRefGoogle Scholar
  2. 2.
    Moerner, W.E., Kador, L.: Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989)CrossRefGoogle Scholar
  3. 3.
    Kukura, P., Celebrano, M., Renn, A., Sandoghdar, V.: Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010)CrossRefGoogle Scholar
  4. 4.
    Chong, S., Min, W., Xie, X.S.: Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010)CrossRefGoogle Scholar
  5. 5.
    Orrit, M., Bernard, J.: Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990)Google Scholar
  6. 6.
    Brokmann, X., Coolen, L., Hermier, J.P., Dahan, M.: Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface. Chem. Phys. 318, 91–98 (2005)CrossRefGoogle Scholar
  7. 7.
    Jin, S., Haggie, P.M., Verkman, A.S.: Single-particle tracking of membrane protein diffusion in a potential: simulation, detection, and application to confined diffusion of CFTR Cl channels. Biophys. J. 93, 1079–1088 (2007)CrossRefGoogle Scholar
  8. 8.
    Krishnan, M., Mojarad, N.M., Kukura, P., Sandoghdar, V.: Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010)CrossRefGoogle Scholar
  9. 9.
    Türkcan, S., et al.: Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu3+-Doped Oxide nanoparticles. Biophys. J. 102, 2299–2308 (2012)CrossRefGoogle Scholar
  10. 10.
    Jaqaman, K., Grinstein, S.: Regulation from within: the cytoskeleton in transmembrane signaling. Trends Cell Biol. 22, 515–526 (2012)CrossRefGoogle Scholar
  11. 11.
    Cheezum, M.K., Walker, W.F., Guilford, W.H.: Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81, 2378–2388 (2001)CrossRefGoogle Scholar
  12. 12.
    Sage, D. et al.: Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods (2015)Google Scholar
  13. 13.
    Stallinga, S., Rieger, B.: Accuracy of the gaussian point spread function model in 2D localization microscopy. Opt. Express 18, 24461–24476 (2010)CrossRefGoogle Scholar
  14. 14.
    Bobroff, N.: Position measurement with a resolution and noise limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986)CrossRefGoogle Scholar
  15. 15.
    Thompson, R.E., Larson, D.R., Webb, W.W.: Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002)CrossRefGoogle Scholar
  16. 16.
    Ober, R.J., Ram, S., Ward, E.S.: Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004)CrossRefGoogle Scholar
  17. 17.
    Schmidt, T., Schuetz, G.J., Baumgartner, W., Gruber, H.J., Schindler, H.: Characterization of photophysics and mobility of single molecules in a fluid lipid membrane. J. Phys. Chem. 99, 17662–17668 (1995)CrossRefGoogle Scholar
  18. 18.
    Moerner, W.E., Fromm, D.P.: Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597 (2003)CrossRefGoogle Scholar
  19. 19.
    Eggeling, C., Volkmer, A., Seidel, C.A.M.: Molecular photobleaching kinetics of rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. Chem. Phys. Chem. 6, 791–804 (2005)CrossRefGoogle Scholar
  20. 20.
    Wang, X., et al.: Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009)CrossRefGoogle Scholar
  21. 21.
    Fu, C.-C., et al.: Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 104, 727–732 (2007)CrossRefGoogle Scholar
  22. 22.
    Rabeau, J.R., et al.: Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. Nano Lett. 7, 3433–3437 (2007)CrossRefGoogle Scholar
  23. 23.
    Kubitscheck, U., Kückmann, O., Kues, T., Peters, R.: Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179 (2000)CrossRefGoogle Scholar
  24. 24.
    Kues, T., Peters, R., Kubitscheck, U.: Visualization and tracking of single protein molecules in the cell nucleus. Biophys. J. 80, 2954–2967 (2001)CrossRefGoogle Scholar
  25. 25.
    Seisenberger, G., et al.: Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929–1932 (2001)Google Scholar
  26. 26.
    Yildiz, A., et al.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)CrossRefGoogle Scholar
  27. 27.
    Yildiz, A., Selvin, P.R.: Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc. Chem. Res. 38, 574–582 (2005)CrossRefGoogle Scholar
  28. 28.
    Pierobon, P., et al.: Velocity, processivity, and individual steps of single Myosin V molecules in live cells. Biophys. J. 96, 4268–4275 (2009)CrossRefGoogle Scholar
  29. 29.
    Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997)CrossRefGoogle Scholar
  30. 30.
    Kaiser, H.J., et al.: Order of lipid phases in model and plasma membranes. Proc. Natl. Acad. Sci. USA 106, 16645–16650 (2009)CrossRefGoogle Scholar
  31. 31.
    Staneva, G., Seigneuret, M., Conjeaud, H., Puff, N., Angelova, M.I.: Making a tool of an artifact: the application of photoinduced lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1. Langmuir 27, 15074–15082 (2011)CrossRefGoogle Scholar
  32. 32.
    Mascalchi, P., Haanappel, E., Carayon, K., Mazères, S., Salomé, L.: Probing the influence of the particle in Single Particle Tracking measurements of lipid diffusion. Soft Matter 8, 4462 (2012)CrossRefGoogle Scholar
  33. 33.
    Sowa, Y., Steel, B.C., Berry, R.M.: A simple backscattering microscope for fast tracking of biological molecules. Rev. Sci. Instrum. 81, 113704 (2010)CrossRefGoogle Scholar
  34. 34.
    Lindfors, K., Kalkbrenner, T., Stoller, P., Sandoghdar, V.: Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004)CrossRefGoogle Scholar
  35. 35.
    Jacobsen, V., Stoller, P., Brunner, C., Vogel, V., Sandoghdar, V.: Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14, 405–414 (2006)CrossRefGoogle Scholar
  36. 36.
    Zhang, L., et al.: Interferometric detection of single gold nanoparticles calibrated against TEM size distributions. Small (2015)Google Scholar
  37. 37.
    Züchner, T., Failla, A.V., Steiner, M., Meixner, A.J.: Probing dielectric interfaces on the nanoscale with elastic scattering patterns of single gold nanorods. Opt. Express 16, 14635–14644 (2008)CrossRefGoogle Scholar
  38. 38.
    Ortega Arroyo, J., et al.: Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014)CrossRefGoogle Scholar
  39. 39.
    Piliarik, M., Sandoghdar, V.: Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014)CrossRefGoogle Scholar
  40. 40.
    van Dijk, M.A., Lippitz, M., Orrit, M.: Far-field optical microscopy of single metal nanoparticles. Acc. Chem. Res. 38, 594–601 (2005)CrossRefGoogle Scholar
  41. 41.
    van Dijk, M.A., et al.: Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486 (2006)CrossRefGoogle Scholar
  42. 42.
    Boyer, D., et al.: Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002)Google Scholar
  43. 43.
    Berciaud, S., Cognet, L., Blab, G.A., Lounis, B.: Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93 (2004)Google Scholar
  44. 44.
    Ignatovich, F., Novotny, L.: Real-time and background-free detection of nanoscale particles. Phys. Rev. Lett. 96, 013901 (2006)CrossRefGoogle Scholar
  45. 45.
    Hong, X., et al.: Background-free detection of single 5 nm nanoparticles through interferometric cross-polarization microscopy. Nano Lett. 11, 541–547 (2011)CrossRefGoogle Scholar
  46. 46.
    Curtis, A.: The mechanism of adhesion of cells to glass a study by interference reflection microscopy. J. Cell. Biol. 20, 199–215 (1964)CrossRefGoogle Scholar
  47. 47.
    Ploem, J.S.: Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface. In: Mononuclear Phagocytes in Immunity, Infection and Pathology, pp. 405–421 (1975)Google Scholar
  48. 48.
    Monzel, C., Fenz, S.F., Merkel, R., Sengupta, K.: Probing biomembrane dynamics by dual-wavelength reflection interference contrast microscopy. Chem. Phys. Chem. 10, 2828–2838 (2009)CrossRefGoogle Scholar
  49. 49.
    Atilgan, E., Ovryn, B.: Reflectivity and topography of cells grown on glass-coverslips measured with phase-shifted laser feedback interference microscopy. Biomed. Opt. Express 2, 2417–2437 (2011)CrossRefGoogle Scholar
  50. 50.
    Matsuzaki, T. et al.: High contrast visualization of cell–hydrogel contact by advanced interferometric optical microscopy. J. Phys. Chem. Lett. 253–257 (2013)Google Scholar
  51. 51.
    Rädler, J.O., Sackmann, E.: Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. Journal de Physique II(3), 727–748 (1993)CrossRefGoogle Scholar
  52. 52.
    Raedler, J., Sackmann, E.: On the measurement of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy. Langmuir 8, 848–853 (1992)CrossRefGoogle Scholar
  53. 53.
    Wiegand, G., Neumaier, K.R., Sackmann, E.: Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM). Appl. Opt. 37, 6892–6905 (1998)CrossRefGoogle Scholar
  54. 54.
    Schilling, J., Sengupta, K., Goennenwein, S., Bausch, A., Sackmann, E.: Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys. Rev. E 69, 021901 (2004)CrossRefGoogle Scholar
  55. 55.
    Kukura, P., et al.: High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009)CrossRefGoogle Scholar
  56. 56.
    Considine, P.S.: Effects of coherence on imaging systems. JOSA 56, 1001–1007 (1966)CrossRefGoogle Scholar
  57. 57.
    Dulin, D., Barland, S., Hachair, X., Pedaci, F.: Efficient illumination for microsecond tracking microscopy. PLoS ONE 9, e107335 (2014)CrossRefGoogle Scholar
  58. 58.
    Spillane, K.M., et al.: High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14, 5390–5397 (2014)CrossRefGoogle Scholar
  59. 59.
    Lin, Y.-H., Chang, W.-L., Hsieh, C.-L.: Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express 22, 9159 (2014)CrossRefGoogle Scholar
  60. 60.
    Kusumi, A., et al.: Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005)CrossRefGoogle Scholar
  61. 61.
    Yildiz, A., Tomishige, M., Vale, R. D., Selvin, P. R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004)Google Scholar
  62. 62.
    Sakamoto, T., Webb, M.R., Forgacs, E., White, H.D., Sellers, J.R.: Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455, 128–132 (2008)CrossRefGoogle Scholar
  63. 63.
    Kukura, P., Celebrano, M., Renn, A., Sandoghdar, V.: Imaging a single quantum dot when it is dark. Nano Lett. 9, 926–929 (2008)CrossRefGoogle Scholar
  64. 64.
    Ohmachi, M., et al.: Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl. Acad. Sci. USA 109, 5294–5298 (2012)CrossRefGoogle Scholar
  65. 65.
    Sönnichsen, C., Alivisatos, A.P.: Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett. 5, 301–304 (2005)CrossRefGoogle Scholar
  66. 66.
    Xiao, L., Qiao, Y., He, Y., Yeung, E.S.: Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal. Chem. 82, 5268–5274 (2010)CrossRefGoogle Scholar
  67. 67.
    Marchuk, K., Fang, N.: Three-dimensional orientation determination of stationary anisotropic nanoparticles with sub-degree precision under total internal reflection scattering microscopy. Nano Lett. 13, 5414–5419 (2013)CrossRefGoogle Scholar
  68. 68.
    Enoki, S., et al.: High-speed angle-resolved imaging of a single gold nanorod with microsecond temporal resolution and one-degree angle precision. Anal. Chem. 87, 2079–2086 (2015)CrossRefGoogle Scholar
  69. 69.
    Züchner, T., Failla, A.V., Hartschuh, A., Meixner, A.J.: A novel approach to detect and characterize the scattering patterns of single Au nanoparticles using confocal microscopy. J. Microsc. 229, 337–343 (2008)CrossRefGoogle Scholar
  70. 70.
    Chojnacki, J., et al.: Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338, 524–528 (2012)CrossRefGoogle Scholar
  71. 71.
    Otto, O., et al.: High-speed video-based tracking of optically trapped colloids. J. Opt. 13, 044011 (2011)CrossRefGoogle Scholar
  72. 72.
    Speidel, M., Jonas, A., Florin, E.-L.: Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28, 69–71 (2003)CrossRefGoogle Scholar
  73. 73.
    Toprak, E., et al.: Defocused orientation and position imaging (DOPI) of myosin V. Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006)CrossRefGoogle Scholar
  74. 74.
    Toprak, E., Balci, H., Blehm, B.H., Selvin, P.R.: Three-dimensional particle tracking via bifocal imaging. Nano Lett. 7, 2043–2045 (2007)CrossRefGoogle Scholar
  75. 75.
    Juette, M.F., Bewersdorf, J.: Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution. Nano Lett. 10, 4657–4663 (2010)CrossRefGoogle Scholar
  76. 76.
    Dalgarno, H.I.C., et al.: Nanometric depth resolution from multi-focal images in microscopy. J. R. Soc. Interface 8, 942–951 (2011)CrossRefGoogle Scholar
  77. 77.
    Holtzer, L., Meckel, T., Schmidt, T.: Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90, 053902 (2007)CrossRefGoogle Scholar
  78. 78.
    Mlodzianoski, M.J., Juette, M.F., Beane, G.L., Bewersdorf, J.: Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. Opt. Express 17, 8264–8277 (2009)CrossRefGoogle Scholar
  79. 79.
    Pavani, S.R.P., et al.: Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009)CrossRefGoogle Scholar
  80. 80.
    Izeddin, I., et al.: PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 20, 4957–4967 (2012)CrossRefGoogle Scholar
  81. 81.
    Quirin, S., Pavani, S.R.P., Piestun, R.: Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc. Natl. Acad. Sci. USA 109, 675–679 (2012)CrossRefGoogle Scholar
  82. 82.
    Shechtman, Y., Weiss, L.E., Backer, A.S., Sahl, S.J., Moerner, W.E.: Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 15, 4194–4199 (2015)CrossRefGoogle Scholar
  83. 83.
    Mojarad, N.M., Krishnan, M.: Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nat. Nanotechnol. 7, 448–452 (2012)CrossRefGoogle Scholar
  84. 84.
    Mojarad, N., Sandoghdar, V., Krishnan, M.: Measuring three-dimensional interaction potentials using optical interference. Opt. Express 21, 9377–9389 (2013)CrossRefGoogle Scholar
  85. 85.
    Feng, S., Winful, H.G.: Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)CrossRefGoogle Scholar
  86. 86.
    Hwang, J., Moerner, W.E.: Interferometry of a single nanoparticle using the Gouy phase of a focused laser beam. Opt. Commun. 280, 487–491 (2007)CrossRefGoogle Scholar
  87. 87.
    Selmke, M., Cichos, F.: Energy-redistribution signatures in transmission microscopy of Rayleigh and Mie particles. J. Opt. Soc. Am. A 31, 2370–2384 (2014)CrossRefGoogle Scholar
  88. 88.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles, pp. 82–129 (1983)Google Scholar
  89. 89.
    Kaz, D.M., McGorty, R., Mani, M., Brenner, M.P., Manoharan, V.N.: Physical ageing of the contact line on colloidal particles at liquid interfaces. Nat. Mater. 11, 138–142 (2011)CrossRefGoogle Scholar
  90. 90.
    Ballard, N., Bon, S.A.F.: Equilibrium orientations of non-spherical and chemically anisotropic particles at liquid-liquid interfaces and the effect on emulsion stability. J. Colloid Interface Sci. 448, 533–544 (2015)CrossRefGoogle Scholar
  91. 91.
    Erickson, H.P.: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009)CrossRefGoogle Scholar
  92. 92.
    Ewers, H., et al.: Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers. Nano Lett. 7, 2263–2266 (2007)CrossRefGoogle Scholar
  93. 93.
    Andrecka, J., Spillane, K.M., Ortega Arroyo, J., Kukura, P.: Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7, 10662–10670 (2013)CrossRefGoogle Scholar
  94. 94.
    Govorov, A.O., et al.: Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006)CrossRefGoogle Scholar
  95. 95.
    Zeng, N., Murphy, A.B.: Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination. Nanotechnology 20, 375702 (2009)CrossRefGoogle Scholar
  96. 96.
    Qin, Z., Bischof, J.C.: Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41, 1191 (2012)CrossRefGoogle Scholar
  97. 97.
    Huschka, R., et al.: Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011)CrossRefGoogle Scholar
  98. 98.
    Baffou, G., Quidant, R.: Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICFO—The Institute of Photonic SciencesBarcelonaSpain

Personalised recommendations