• Jaime Ortega Arroyo
Part of the Springer Theses book series (Springer Theses)


Irrespective of the length- and time-scales, the interactions between an object and its surroundings shape the potential energy surface of the system, which in turn determines the type of motion the object exhibits. The search to understand the dynamics of a system, that is to characterise the type of motion and the origin of the interactions that give rise to said behaviour, has brought disciplines as dissimilar as astrophysics and cell biology together. Although the dynamics of a system are most commonly characterised at the ensemble level, the presence of local heterogeneity and thus the likelihood for different interactions pose the scenario that two identical objects may behave very differently.


  1. 1.
    Wennmalm, S., Simon, S.M.: Studying individual events in biology. Annu. Rev. Biochem. 76, 419–446 (2007)CrossRefGoogle Scholar
  2. 2.
    Greenleaf, W.J., Woodside, M.T., Block, S.M.: High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36, 171–190 (2007)CrossRefGoogle Scholar
  3. 3.
    Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000)CrossRefGoogle Scholar
  4. 4.
    Elson, E.L., Fried, E., Dolbow, J.E., Genin, G.M.: Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39, 207–226 (2010)CrossRefGoogle Scholar
  5. 5.
    Neuman, K.C., Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787 (2004)CrossRefGoogle Scholar
  6. 6.
    Gosse, C., Croquette, V.: Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002)CrossRefGoogle Scholar
  7. 7.
    Kodera, N., Ando, T.: The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys. Rev. 1–24 (2014)Google Scholar
  8. 8.
    Halvorsen, K., Wong, W.P.: Massively parallel single-molecule manipulation using centrifugal force. Biophys. J. 98, L53–L55 (2010)CrossRefGoogle Scholar
  9. 9.
    Perkins, T.T.: Ångström-precision optical traps and applications*. Annu. Rev. Biophys. 43, 279–302 (2014)CrossRefGoogle Scholar
  10. 10.
    Lebel, P., Basu, A., Oberstrass, F.C., Tretter, E.M., Bryant, Z.: Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat. Methods 11, 456–462 (2014)CrossRefGoogle Scholar
  11. 11.
    Neuman, K.C., Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008)CrossRefGoogle Scholar
  12. 12.
    Pyne, A., Thompson, R., Leung, C., Roy, D., Hoogenboom, B.W.: Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small 10, 3257–3261 (2014)CrossRefGoogle Scholar
  13. 13.
    Ando, T., Uchihashi, T., Kodera, N.: High-speed AFM and applications to biomolecular systems. Annu. Rev. Biophys. 42, 393–414 (2013)CrossRefGoogle Scholar
  14. 14.
    Moerner, W.E., Kador, L.: Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989)CrossRefGoogle Scholar
  15. 15.
    Orrit, M., Bernard, J.: Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990)CrossRefGoogle Scholar
  16. 16.
    Cognet, L., Leduc, C., Lounis, B.: Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Curr. Opin. Chem. Biol. 20, 78–85 (2014)CrossRefGoogle Scholar
  17. 17.
    Hell, S.W.: Far-field optical nanoscopy. Science 316, 1153–1158 (2007)CrossRefGoogle Scholar
  18. 18.
    Yildiz, A., et al.: Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003)CrossRefGoogle Scholar
  19. 19.
    Kusumi, A., et al.: Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005)CrossRefGoogle Scholar
  20. 20.
    Ueno, H., et al.: Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J. 98, 2014–2023 (2010)CrossRefGoogle Scholar
  21. 21.
    Lindfors, K., Kalkbrenner, T., Stoller, P., Sandoghdar, V.: Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICFO—The Institute of Photonic SciencesBarcelonaSpain

Personalised recommendations