Advertisement

Introduction

  • Sarah Holliday
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

It is widely reported that more solar energy strikes the earth in one single hour than the total energy that is consumed globally in one year (2001 data) [1]. This seductive fact has motivated over a century of research and investment into photovoltaic (PV) cells to try to turn this into useful electrical energy in the most efficient and cost-effective manner possible. With the growing international consensus on the need to reduce fossil fuel consumption in order to prevent catastrophic climate change, the interest in solar and other renewable energy sources has become greater than ever.

References

  1. 1.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103:15729CrossRefGoogle Scholar
  2. 2.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Prog Photovoltaics Res Appl 23:1CrossRefGoogle Scholar
  3. 3.
    Espinosa N, Hosel M, Angmo D, Krebs FC (2012) Energy Environ Sci 5:5117CrossRefGoogle Scholar
  4. 4.
    Kippelen B, Bredas J-L (2009) Energy Environ Sci 2:251CrossRefGoogle Scholar
  5. 5.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec C (2006) J Adv Mater 18:789CrossRefGoogle Scholar
  6. 6.
    Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971CrossRefGoogle Scholar
  7. 7.
    Kawashima K, Tamai Y, Ohkita H, Osaka I, Takimiya K (2015) Nat Commun 6Google Scholar
  8. 8.
    Gong X, Tong M, Brunetti FG, Seo J, Sun Y, Moses D, Wudl F, Heeger A (2011) J Adv Mater 23:2272CrossRefGoogle Scholar
  9. 9.
    Spanggaard H, Krebs FC (2004) Sol Energy Mater Sol Cells 83:125CrossRefGoogle Scholar
  10. 10.
    Credgington D, Jamieson FC, Walker B, Nguyen T-Q, Durrant JR (2012) Adv Mater 24:2135CrossRefGoogle Scholar
  11. 11.
    Wang M, Hill IG (2012) Org Electron 13:498CrossRefGoogle Scholar
  12. 12.
    Chen L-M, Hong Z, Li G, Yang Y (2009) Adv Mater 21:1434CrossRefGoogle Scholar
  13. 13.
    Liu J, Shi Y, Yang Y (2001) Adv Funct Mater 11:420CrossRefGoogle Scholar
  14. 14.
    Mandoc MM, Veurman W, Koster LJA, de Boer B, Blom PWM (2007) Adv Funct Mater 17:2167CrossRefGoogle Scholar
  15. 15.
    McNeill CR, Halls JJM, Wilson R, Whiting GL, Berkebile S, Ramsey MG, Friend RH, Greenham NC (2008) Adv Funct Mater 18:2309CrossRefGoogle Scholar
  16. 16.
    Qi B, Wang J (2013) Phys Chem Chem Phys 15:8972CrossRefGoogle Scholar
  17. 17.
    Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:954CrossRefGoogle Scholar
  18. 18.
    Zhou H, Yang L, You W (2012) Macromolecules 45:607CrossRefGoogle Scholar
  19. 19.
    Li Y (2012) Acc Chem Res 45:723CrossRefGoogle Scholar
  20. 20.
    Winder C, Sariciftci NS (1077) J Mater Chem 2004:14Google Scholar
  21. 21.
    McCulloch I, Ashraf RS, Biniek L, Bronstein H, Combe C, Donaghey JE, James DI, Nielsen CB, Schroeder BC, Zhang W (2012) Acc Chem Res 45:714CrossRefGoogle Scholar
  22. 22.
    Holliday S, Donaghey JE, McCulloch I (2014) Chem Mater 26:647CrossRefGoogle Scholar
  23. 23.
    Nielsen CB, McCulloch I (2013) Prog Polym Sci 38:2053CrossRefGoogle Scholar
  24. 24.
    Sirringhaus H, Tessler N, Friend RH (1998) Science 280:1741CrossRefGoogle Scholar
  25. 25.
    Wang G, Swensen J, Moses D, Heeger AJ (2003) J Appl Phys 93:6137CrossRefGoogle Scholar
  26. 26.
    Dang MT, Hirsch L, Wantz G (2011) Adv Mater 23:3597CrossRefGoogle Scholar
  27. 27.
    Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) Energy Environ Sci 5:7943CrossRefGoogle Scholar
  28. 28.
    Lu L, Yu L (2014) Adv Mater 26:4413CrossRefGoogle Scholar
  29. 29.
    Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) J Org Chem 60:532CrossRefGoogle Scholar
  30. 30.
    Li C-Z, Yip H-L, Jen AKY (2012) J Mater Chem 22:4161CrossRefGoogle Scholar
  31. 31.
    Li Y (2013) Chem—An Asian J 8:2316Google Scholar
  32. 32.
    Li C-Z, Chien S-C, Yip H-L, Chueh C-C, Chen F-C, Matsuo Y, Nakamura E, Jen AKY (2011) Chem Commun 47:10082CrossRefGoogle Scholar
  33. 33.
    Liu T, Troisi A (1038) Adv Mater 2013:25Google Scholar
  34. 34.
    Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR (2012) Chem Sci 3:485CrossRefGoogle Scholar
  35. 35.
    Ma W, Tumbleston JR, Wang M, Gann E, Huang F, Ade H (2013) Adv Energy Mater 3:864CrossRefGoogle Scholar
  36. 36.
    Zhou H, Zhang Y, Mai C-K, Collins SD, Bazan GC, Nguyen T-Q, Heeger A (2015) J Adv Mater 27:1767CrossRefGoogle Scholar
  37. 37.
    Chen C-C, Chang W-H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y (2014) Adv Mater 26:5670CrossRefGoogle Scholar
  38. 38.
    Kooistra FB, Mihailetchi VD, Popescu LM, Kronholm D, Blom PWM, Hummelen JC (2006) Chem Mater 18:3068CrossRefGoogle Scholar
  39. 39.
    Rondeau-Gagné S, Curutchet C, Grenier F, Scholes GD, Morin J-F (2010) Tetrahedron 66:4230CrossRefGoogle Scholar
  40. 40.
    He Y, Chen H-Y, Hou J, Li Y (2010) J Am Chem Soc 132:1377CrossRefGoogle Scholar
  41. 41.
    Sauvé G, Fernando R (2015) J Phys Chem Lett 6:3770CrossRefGoogle Scholar
  42. 42.
    Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I (2015) Acc Chem ResGoogle Scholar
  43. 43.
    Eftaiha AAF, Sun, JP, Hill IG, Welch GC (2014) J Mater Chem A 2:1201Google Scholar
  44. 44.
    McAfee SM, Topple JM, Hill IG, Welch GCJ (2015) Mater Chem A 3:16393CrossRefGoogle Scholar
  45. 45.
    Lin Y, Zhan X (2014) Mater Horiz 1:470CrossRefGoogle Scholar
  46. 46.
    Zhan C, Zhang X, Yao J (2015) RSC Adv 5:93002CrossRefGoogle Scholar
  47. 47.
    Sonar P, Fong Lim JP, Chan K (2011) L. Energy Environ Sci 4:1558CrossRefGoogle Scholar
  48. 48.
    Anthony JE (2010) Chem Mater 23:583CrossRefGoogle Scholar
  49. 49.
    Hwang YJ, Li H, Courtright BAE, Subramaniyan S, Jenekhe SA (2015) Adv Mater n/aGoogle Scholar
  50. 50.
    Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ (2015) J Am Chem SocGoogle Scholar
  51. 51.
    Facchetti A (2013) Mater Today 16:123CrossRefGoogle Scholar
  52. 52.
    Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y (2015) Nat Photon 9:35CrossRefGoogle Scholar
  53. 53.
    Gao J, Xiao C, Jiang W, Wang Z (2014) Org Lett 16:394CrossRefGoogle Scholar
  54. 54.
    Li C, Wonneberger H (2012) Adv Mater 24:613CrossRefGoogle Scholar
  55. 55.
    Dittmer JJ, Lazzaroni R, Leclère P, Moretti P, Granström M, Petritsch K, Marseglia EA, Friend RH, Brédas JL, Rost H, Holmes AB (2000) Sol Energy Mater Sol Cells 61:53CrossRefGoogle Scholar
  56. 56.
    Rajaram S, Shivanna R, Kandappa SK, Narayan KS (2012) J Phys Chem Lett 3:2405CrossRefGoogle Scholar
  57. 57.
    Ye L, Sun K, Jiang W, Zhang S, Zhao W, Yao H, Wang Z, Hou J (2015) ACS Appl Mater Interfaces 7:9274CrossRefGoogle Scholar
  58. 58.
    Zhong Y, Trinh MT, Chen R, Wang W, Khlyabich PP, Kumar B, Xu Q, Nam C-Y, Sfeir MY, Black C, Steigerwald ML, Loo Y-L, Xiao S, Ng F, Zhu XY, Nuckolls C (2014) J Am Chem Soc 136:15215CrossRefGoogle Scholar
  59. 59.
    Zhang X, Lu Z, Ye L, Zhan C, Hou J, Zhang S, Jiang B, Zhao Y, Huang J, Zhang S, Liu Y, Shi Q, Liu Y, Yao J (2013) Adv Mater 25:5791CrossRefGoogle Scholar
  60. 60.
    Zhang X, Zhan C, Yao J (2015) Chem Mater 27:166CrossRefGoogle Scholar
  61. 61.
    Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lin Lai JY, Hu H, Yu D, Yan H (2015) Energy Environ Sci 8:520CrossRefGoogle Scholar
  62. 62.
    Yan Q, Zhou Y, Zheng Y-Q, Pei J, Zhao D (2013) Chem Sci 4:4389CrossRefGoogle Scholar
  63. 63.
    Lin Y, Wang Y, Wang J, Hou J, Li Y, Zhu D, Zhan X (2014) Adv Mater 26:5137CrossRefGoogle Scholar
  64. 64.
    Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai JYL, Hu H, Ma T, Hu R, Yu D, Huang X, Tang BZ, Yan H (2014) Adv Mater n/aGoogle Scholar
  65. 65.
    Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y (2015) Adv Mater 27:2938CrossRefGoogle Scholar
  66. 66.
    Sun D, Meng D, Cai Y, Fan B, Li Y, Jiang W, Huo L, Sun Y, Wang Z (2015) J Am Chem Soc 137:11156CrossRefGoogle Scholar
  67. 67.
    Li H, Earmme T, Ren G, Saeki A, Yoshikawa S, Murari NM, Subramaniyan S, Crane MJ, Seki S, Jenekhe SA (2014) J Am Chem Soc 136:14589CrossRefGoogle Scholar
  68. 68.
    Li H, Hwang Y-J, Courtright BAE, Eberle FN, Subramaniyan S, Jenekhe SA (2015) Adv Mater 27:3266CrossRefGoogle Scholar
  69. 69.
    Lu R-Q, Zheng Y-Q, Zhou Y-N, Yan X-Y, Lei T, Shi K, Zhou Y, Pei J, Zoppi L, Baldridge KK, Siegel JS, Cao X-YJ (2014) Mater Chem A 2:20515CrossRefGoogle Scholar
  70. 70.
    Kuvychko IV, Dubceac C, Deng SHM, Wang X-B, Granovsky AA, Popov AA, Petrukhina MA, Strauss SH, Boltalina OV (2013) Angew Chem Int Ed 52:7505CrossRefGoogle Scholar
  71. 71.
    Fix AG, Deal PE, Vonnegut CL, Rose BD, Zakharov LN, Haley MM (2013) Org Lett 15:1362CrossRefGoogle Scholar
  72. 72.
    Shimizu A, Tobe Y (2011) Angew Chem Int Ed 50:6906CrossRefGoogle Scholar
  73. 73.
    Mohebbi AR, Wudl F (2011) Chem—A Eur J 17:2642CrossRefGoogle Scholar
  74. 74.
    Mohebbi AR, Yuen J, Fan J, Munoz C, Wang MF, Shirazi RS, Seifter J, Wudl F (2011) Adv Mater 23:4644Google Scholar
  75. 75.
    Brunetti FG, Varotto A, Batara NA, Wudl F (2011) Chem—A Eur J 17:8604CrossRefGoogle Scholar
  76. 76.
    Kim HU, Kim J-H, Suh H, Kwak J, Kim D, Grimsdale AC, Yoon SC, Hwang D-H (2013) Chem Commun 49:10950CrossRefGoogle Scholar
  77. 77.
    Park OY, Kim HU, Kim J-H, Park JB, Kwak J, Shin WS, Yoon SC, Hwang D-H (2013) Sol Energy Mater Sol Cells 116:275CrossRefGoogle Scholar
  78. 78.
    Scott LT, Hashemi MM, Meyer DT, Warren HB (1991) J Am Chem Soc 113:7082CrossRefGoogle Scholar
  79. 79.
    Winzenberg KN, Kemppinen P, Scholes FH, Collis GE, Shu Y, Birendra Singh T, Bilic A, Forsyth CM, Watkins SE (2013) Chem Commun 49:6307CrossRefGoogle Scholar
  80. 80.
    Shi H, Fu W, Shi M, Ling J, Chen HJ (1902) Mater Chem A 2015:3Google Scholar
  81. 81.
    Kim Y, Song CE, Moon S-J, Lim E (2014) Chem Commun 50:8235CrossRefGoogle Scholar
  82. 82.
    Lin Y, Li Y, Zhan X (2013) Adv Energy Mater 3:724CrossRefGoogle Scholar
  83. 83.
    Fang Y, Pandey AK, Lyons DM, Shaw PE, Watkins SE, Burn PL, Lo SC, Meredith P (2014) ChemPhysChem n/aGoogle Scholar
  84. 84.
    Bai H, Wang Y, Cheng P, Wang J, Wu Y, Hou J, Zhan XJ (1910) Mater Chem A 2015:3Google Scholar
  85. 85.
    Lin Y, Zhang Z-G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X (2015) Energy Environ Sci 8:610CrossRefGoogle Scholar
  86. 86.
    Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X (2015) Adv Mater 27:1170CrossRefGoogle Scholar
  87. 87.
    Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD (2014) J Am Chem Soc 136:9608CrossRefGoogle Scholar
  88. 88.
    Liu W, Shi H, Andersen TR, Zawacka NK, Cheng P, Bundgaard E, Shi M, Zhan X, Krebs FC, Chen H (2015) RSC Adv 5:36001CrossRefGoogle Scholar
  89. 89.
    Liu W, Shi H, Fu W, Zuo L, Wang L, Chen H (2015) Org Electron 25:219CrossRefGoogle Scholar
  90. 90.
    Kwon OK, Park JH, Kim DW, Park SK, Park SY (2015) Adv Mater n/aGoogle Scholar
  91. 91.
    Mondal R, Ko S, Norton JE, Miyaki N, Becerril HA, Verploegen E, Toney MF, Bredas J-L, McGehee MD, Bao Z (2009) J Mater Chem 19:7195CrossRefGoogle Scholar
  92. 92.
    Pandey L, Risko C, Norton JE, Brédas J-L (2012) Macromolecules 45:6405CrossRefGoogle Scholar
  93. 93.
    Xu Y-X, Chueh C-C, Yip H-L, Ding F-Z, Li Y-X, Li C-Z, Li X, Chen W-C, Jen AKY (2012) Adv Mater 24:6356CrossRefGoogle Scholar
  94. 94.
    Dimitrov SD, Bakulin AA, Nielsen CB, Schroeder BC, Du J, Bronstein H, McCulloch I, Friend RH, Durrant JR (2012) J Am Chem Soc 134:18189CrossRefGoogle Scholar
  95. 95.
    Douglas JD, Chen MS, Niskala JR, Lee OP, Yiu AT, Young EP, Fréchet JM (2014) J Adv Mater 26:4313CrossRefGoogle Scholar
  96. 96.
    Roncali J, Leriche P, Cravino A (2007) Adv Mater 19:2045CrossRefGoogle Scholar
  97. 97.
    Skabara PJ, Arlin J-B, Geerts YH (1948) Adv Mater 2013:25Google Scholar
  98. 98.
    Collins BA, Gann E, Guignard L, He X, McNeill CR, Ade H (2010) J Phys Chem Lett 1:3160CrossRefGoogle Scholar
  99. 99.
    Collins BA, Li Z, Tumbleston JR, Gann E, McNeill CR, Ade H (2013) Adv Energy Mater 3:65CrossRefGoogle Scholar
  100. 100.
    Treat ND, Brady MA, Smith G, Toney MF, Kramer EJ, Hawker CJ, Chabinyc ML (2011) Adv Energy Mater 1:82CrossRefGoogle Scholar
  101. 101.
    Mukherjee S, Proctor CM, Bazan GC, Nguyen TQ, Ade H (2015) Adv Energy Mater 5:n/aGoogle Scholar
  102. 102.
    Shoaee S, Subramaniyan S, Xin H, Keiderling C, Tuladhar PS, Jamieson F, Jenekhe SA, Durrant JR (2013) Adv Funct Mater 23:3286CrossRefGoogle Scholar
  103. 103.
    Burke TM, McGehee MD (1923) Adv Mater 2014:26Google Scholar
  104. 104.
    Na JY, Kang B, Sin DH, Cho K, Park YD (2015) Sci Rep 5:13288CrossRefGoogle Scholar
  105. 105.
    Kang B, Lee WH, Cho K (2013) ACS Appl Mater Interfaces 5:2302CrossRefGoogle Scholar
  106. 106.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Nat Commun 5Google Scholar
  107. 107.
    Liao H-C, Ho C-C, Chang C-Y, Jao M-H, Darling SB, Su W-F (2013) Mater Today 16:326CrossRefGoogle Scholar
  108. 108.
    Wang DH, Pron A, Leclerc M, Heeger AJ (2013) Adv Funct Mater 23:1297CrossRefGoogle Scholar
  109. 109.
    Jung JW, Liu F, Russell TP, Jo WH (2012) Energy Environ Sci 5:6857CrossRefGoogle Scholar
  110. 110.
    Verploegen E, Mondal R, Bettinger CJ, Sok S, Toney MF, Bao Z (2010) Adv Funct Mater 20:3519CrossRefGoogle Scholar
  111. 111.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617CrossRefGoogle Scholar
  112. 112.
    Cheng P, Zhao X, Zhou W, Hou J, Li Y, Zhan X (2014) Org Electron 15:2270CrossRefGoogle Scholar
  113. 113.
    Lou SJ, Szarko JM, Xu T, Yu L, Marks TJ, Chen LX (2011) J Am Chem Soc 133:20661CrossRefGoogle Scholar
  114. 114.
    Soon YW, Cho H, Low J, Bronstein H, McCulloch I, Durrant JR (2013) Chem Commun 49:1291CrossRefGoogle Scholar
  115. 115.
    Razzell-Hollis J, Wade J, Tsoi WC, Soon Y, Durrant J, Kim J-SJ (2014) Mater Chem A 2:20189CrossRefGoogle Scholar
  116. 116.
    Bannock JH, Krishnadasan SH, Nightingale AM, Yau CP, Khaw K, Burkitt D, Halls JJM, Heeney M, de Mello JC (2013) Adv Funct Mater 23:2123CrossRefGoogle Scholar
  117. 117.
    Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Mater Today 15:36CrossRefGoogle Scholar
  118. 118.
    Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M (2014) Adv Mater 26:29CrossRefGoogle Scholar
  119. 119.
    Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC (2012) Adv Mater 24:580CrossRefGoogle Scholar
  120. 120.
    Neugebauer H, Brabec C, Hummelen JC, Sariciftci NS (2000) Sol Energy Mater Sol Cells 61:35CrossRefGoogle Scholar
  121. 121.
    Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nano Lett 5:579CrossRefGoogle Scholar
  122. 122.
    Yang X, van Duren JKJ, Janssen RAJ, Michels MAJ, Loos J (2004) Macromol 37:2151CrossRefGoogle Scholar
  123. 123.
    Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan C-H, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Angew Chem Int Ed 53:12870CrossRefGoogle Scholar
  124. 124.
    Manceau M, Bundgaard E, Carle JE, Hagemann O, Helgesen M, Sondergaard R, Jorgensen M, Krebs FC (2011) J Mater Chem 21:4132CrossRefGoogle Scholar
  125. 125.
    Arbab EAA, Taleatu B, Mola GT (2014) J Mod Opt 61:1749CrossRefGoogle Scholar
  126. 126.
    Hauch JA, Schilinsky P, Choulis SA, Childers R, Biele M, Brabec CJ (2008) Sol Energy Mater Sol Cells 92:727CrossRefGoogle Scholar
  127. 127.
    Espinosa N, Hosel M, Jorgensen M, Krebs FC (2014) Energy Environ Sci 7:855CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryImperial College LondonLondonUK

Personalised recommendations