Skip to main content

Force

  • Chapter
  • First Online:
Nanophotonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 213))

  • 1748 Accesses

Abstract

In this chapter forces that are often taken into consideration in the study of nanoscience are discussed. These are forces that can be used in the manipulation of individual nanoparticles or in the assembly of systems formed from an ordered arrangement of nanoscale features. Such interactions are very important for technological applications as well as in developing an understanding of how small particles interact with their environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S.M. Rikken, R.J.M. Nolte, J.C. Maan, J.C.M. van Hest, D.A. Wilson, P.C. Christianen, Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10, 1295–1308 (2014)

    Article  ADS  Google Scholar 

  2. R.F. Ismagilov, A. Schwartz, N. Bowden, G.M. Whitesides, A. Chem, Autonomous movement and self-assembly. Int. Ed. 41, 652–654 (2002)

    Article  Google Scholar 

  3. W. Gao, K.M. Manesh, J. Hua, S. Sattayasamitsathit, J. Wang, Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7, 2047–2051 (2011)

    Article  Google Scholar 

  4. P. Tierno, R. Albalat, F. Sagues, Autonomously moving catalytic microellipsoids dynamically guided by external magnetic fields. Small 6, 1749 (2010)

    Article  Google Scholar 

  5. K. Guevorkian, J.M. Valles, Aligning Paramecium caudatum with static magnetic fields. Biophys. J. 90, 3004–3011 (2006)

    Article  ADS  Google Scholar 

  6. P. Dhar, Y. Cao, T. Kline, P. Pal, C. Swayne, T.M. Fischer, B. Miller, T.E. Mallouk, A. Sen, T.H. Johansen, Autonomously moving local nanoprobes in heterogeneous magnetic fields. J. Phys. Chem. C 111, 3607–3613 (2007)

    Article  Google Scholar 

  7. I.O. Shkilyarevski, P. Jonkheijm, P.C.M. Christianen, A.P.H.J. Schenning, E.W. Meijer, O. Henze, A.F.M. Kilbinger, W.J. Feast, A. Del Guerzo, J.-P. Desvergne, J.C. Maan, Magnetic deformation of self-assembled sexithiophene spherical nanocapsules. J. Am. Chem. Soc. 127, 1112 (2005)

    Article  Google Scholar 

  8. Y. Lui, K. Oh, J.G. Bai, C.-L. Chang, W. Yeo, J.-H. Chung, K.-L. Lee, W.K. Liu, Manipulation of nanoparticles and biolecules by electric field and surface tension. Comput. Methods Appl. Mech. Eng. 197, 2156–2172 (2008)

    Article  ADS  Google Scholar 

  9. Q. Chen, H. Huang, L. Chen, X. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for Bioparticle Manipulation. Int. J. Mol. Sci. 15, 18281–18309 (2014)

    Article  Google Scholar 

  10. T.B. Jones, Basic theory of dielectrophoresis and electrorotation. IEEE Eng. Bio. Med. Mag. 22, 33–42 (2003)

    Article  Google Scholar 

  11. R.E. March, An introduction to quadrupole ion trap mass spectrometry. J. Mass. Spectro. 32, 351–369 (1997)

    Article  ADS  Google Scholar 

  12. J.R.C. Pita, Design, development and operation of novel ion trap geometries. Ph.D. thesis, Blackett Laboratory, Imperial College (2007)

    Google Scholar 

  13. M.S. Rocha, Optical tweezers for undergraduates: theoretical analysis and experiments. Am. J. Phys. 77, 704–712 (2000)

    Article  ADS  Google Scholar 

  14. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  Google Scholar 

  15. A. Ashkin, J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1529 (1987)

    Article  ADS  Google Scholar 

  16. A. Ashkin, Forces of a single-beam gradient laser trap oon a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992)

    Article  ADS  Google Scholar 

  17. K. Svoboda, S.M. Block, Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994)

    Article  Google Scholar 

  18. A. Ashkin, Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997)

    Article  ADS  Google Scholar 

  19. H.-L. Guo, Z.-Y. Li, Optical tweezers technique and its applications. Sci. China Phys. Mech. Astronomy 56, 2351–2360 (2013)

    Article  ADS  Google Scholar 

  20. J.E. Molloy, M.J. Padgett, Lights, action: optical tweezers. Contemp. Phys. 43, 241–258 (2002)

    Article  ADS  Google Scholar 

  21. W.M.R. Simpson, Surprises in Theoretical Casimir Physics: Quantum Forces in Inhomogeneous Media (Springer, Heidelburg, 2015)

    Book  Google Scholar 

  22. P. Ball, Feel the Force. Nature 447, 772–774 (2007)

    Article  ADS  Google Scholar 

  23. K.A. Milton, Recent developments in the Casimir effect. J. Phys.: Conf. Ser. 161, 012001-1–012001-29 (2009)

    Google Scholar 

  24. H. De Los Santos, Nanoelectromechanical quantum circuits and systems. Proc. IEEE 91, 1907–1922 (2003)

    Article  Google Scholar 

  25. M. Sedighi Ghozotkhar, The Casimir for control in nano and micro electomechnical systems. Ph.D. thesis, University of Groningen (2016)

    Google Scholar 

  26. F.S.S. Rosa, On the possibility of Casimir repulsion using metamaterials. J. Phys. Conf. Ser. 161, 012039-1–012039-8 (2009)

    Google Scholar 

  27. E. Buks, M.L. Roukes, Casimir force changes sign. Nature 419, 119 (2002)

    Article  ADS  Google Scholar 

  28. O. Kenneth, I. Klich, A. Mann, M. Rezen, Repulsive Casimir forces. Phys. Rev. Lett. 89, 033001 (2002)

    Article  ADS  Google Scholar 

  29. S.K. Lamoreaux, The Casimir force: background, experiments, and applications. Rep. Prog. Phys. 68, 201–236 (2005)

    Article  ADS  Google Scholar 

  30. G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827–1880 (2009)

    Article  ADS  Google Scholar 

  31. I. Bresvik, A. Ellingsen, A. Milton, Thermal corrections to the Casimir effect. New J. Phys. 8, 236–256 (2006)

    Article  ADS  Google Scholar 

  32. K.A. Milton, Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific Publishing Co., Singapore, 2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur McGurn .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McGurn, A. (2018). Force. In: Nanophotonics. Springer Series in Optical Sciences, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-77072-7_6

Download citation

Publish with us

Policies and ethics