Phase Field Topology Constraints

Chapter
Part of the Association for Women in Mathematics Series book series (AWMS, volume 12)

Abstract

This paper presents a morphological approach to extract topologically critical regions in phase field models. There are a few studies regarding topological properties of phase fields. One line of work related to our problem addresses constrained phase field evolution. This approach is based on modifying the optimization problem to limit connectedness of the interface. However, this approach results in a complex optimization problem, and it provides nonlocal control. We adapted a non-simple point concept from digital topology to local regions using structuring masks. These regions can be used to constrain the evolution locally. Besides this approach is flexible as it allows the design of structuring elements. Such a study to define topological structures specific to phase field dynamics has not been done to our knowledge.

References

  1. 1.
    Alexandrov, O., Santosa, F.: A topology-preserving level set method for shape optimization. J. Comput. Phys. 204(1), 121–130 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple sets, p-simple points and critical kernels. J. Math. Imaging Vis. 35(1), 23–35 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dondl, P.W., Lemenant, A., Wojtowytsch, S.: Phase field models for thin elastic structures with topological constraint. Arch. Ration. Mech. Anal. 223(2), 693–736 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Du, Q., Liu, C., Wang, X.: Retrieving topological information for phase field models. SIAM J. Appl. Math. 65(6), 1913–1932 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eckhardt, U., Latecki, L.: Digital Topology. In Current Topics in Pattern Recognition Research, Research Trends, Council of Scientific Information, Vilayil Gardens, Trivandrum (1995)Google Scholar
  6. 6.
    Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-d binary images according to continuous one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gunther, D.: Topological analysis of discrete scalar data. Ph.D. thesis, Max-Planck-Institut Informatik (2012)Google Scholar
  8. 8.
    Han, X., Xu, C., Prince, J.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)Google Scholar
  9. 9.
    Khalimsky, E.: Topological structures in computer science. J. Appl. Math. Simul. 1(1), 25–40 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)CrossRefGoogle Scholar
  11. 11.
    Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)CrossRefGoogle Scholar
  12. 12.
    Le Guyader, C., Vese, L.A.: Self-repelling snakes for topology-preserving segmentation models. IEEE Trans. Image Process. 17(5), 767–779 (2008)Google Scholar
  13. 13.
    Malgouyres, R.: Presentation of the fundamental group in digital surfaces. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) Discrete Geometry for Computer Imagery. DGCI 1999. Lecture Notes in Computer Science, vol. 1568, pp. 136–150. Springer, Berlin (1999)CrossRefGoogle Scholar
  14. 14.
    Melin, E.: Connectedness and continuity in digital spaces with the Khalimsky topology (2003)Google Scholar
  15. 15.
    Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Passat, N., Mazo, L.: An introduction to simple sets. Pattern Recogn. Lett. 30(15), 1366–1377 (2009)CrossRefGoogle Scholar
  17. 17.
    Ronse, C.: Minimal test patterns for connectivity preservation in parallel thinning algorithms for binary digital images. Discret. Appl. Math. 21(1), 67–79 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wojtowytsch, S.: Phase-field models for thin elastic structures: Willmore’s energy and topological constraints. Ph.D. thesis, Durham University (2017)Google Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  1. 1.Okan UniversityIstanbulTurkey

Personalised recommendations