Shape Patterns in Digital Fabrication: A Survey on Negative Poisson’s Ratio Metamaterials

  • Bengisu Yılmaz
  • Venera Adanova
  • Rüyam Acar
  • Sibel Tari
Part of the Association for Women in Mathematics Series book series (AWMS, volume 12)


Poisson’s ratio for solid materials is defined as the ratio of the lateral length shrinkage to the longitudinal part extension on a simple tension test. While Poisson’s ratio for almost every material in nature is a positive number, materials having negative Poisson’s ratio may be engineered. We survey computational works toward design and fabrication of negative Poisson’s ratio materials focusing on shape patterns from macro to micro scale. Specifically, we cover folding, knitting, and repeatedly ordering geometric structures, i.e., symmetry. Both pattern design and the numerical aspects of the problem yield various future research possibilities.



The work is funded by TUBITAK via 114E204.


  1. 1.
    Alderson, K.L., Alderson, A., Smart, G., Simkins, V.R., Davies, P.J.: Auxetic polypropylene fibres: part 1 - manufacture and characterisation. Plast. Rubber Compos. 31(8), 344–349 (2002)CrossRefGoogle Scholar
  2. 2.
    Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)CrossRefGoogle Scholar
  3. 3.
    Bickel, B., Bächer, M., Otaduy, M.A., Lee, H.R., Pfister, H., Gross, M., Matusik, W.: Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29(4), 63:1–63:10 (2010)CrossRefGoogle Scholar
  4. 4.
    Caddock, B.D., Evans, K.E.: Microporous materials with negative poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D. Appl. Phys. 22(12), 1877 (1989)CrossRefGoogle Scholar
  5. 5.
    Cranford, S., Sen, D., Buehler, M.J.: Meso-origami: folding multilayer graphene sheets. Appl. Phys. Lett. 95(12) (2009)CrossRefGoogle Scholar
  6. 6.
    Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dudte, L.H., Vouga, E., Tachi, T., Mahadevan, L.: Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016)CrossRefGoogle Scholar
  8. 8.
    Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour 15(4), 170–174 (1991)CrossRefGoogle Scholar
  9. 9.
    Evans, K.E., Caddock, B.D.: Microporous materials with negative poisson’s ratios. II. Mechanisms and interpretation. J. Phys. D. Appl. Phys. 22(12), 1883 (1989)Google Scholar
  10. 10.
    Friis, E.A., Lakes, R.S., Park, J.B.: Negative poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 23(12), 4406–4414 (1988)CrossRefGoogle Scholar
  11. 11.
    Garber, A.M.: Prolytic materials for thermal protection systems. Aerosp. Eng. 22, 126–137 (1963)Google Scholar
  12. 12.
    Gibson, L.J., Ashby, M.F.: Cellular Solids. Cambridge University Press, Cambridge (1997)Google Scholar
  13. 13.
    Gunton, D.J., Saunders, G.A.: The young’s modulus and poisson’s ratio of arsenic, antimony and bismuth. J. Mater. Sci. 7(9), 1061–1068 (1972)CrossRefGoogle Scholar
  14. 14.
    Haeri, A.Y., Widner, D.J., Parise, J.B.: Elasticity of α-cristobaliite: a silicon dioxide with negative poisson’s ratio. Science 257, 650–652 (1992)CrossRefGoogle Scholar
  15. 15.
    Kharevych, L., Mullen, P., Owhadi, H., Desbrun, M.: Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28(3), 51:1–51:8 (2009)CrossRefGoogle Scholar
  16. 16.
    Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96(4), 045901–045904 (2006)Google Scholar
  17. 17.
    Kobayashi, H., Kresling, B., Vincent, J.F.V.: The geometry of unfolding tree leaves. Proc. R. Soc. Lond. B Biol. Sci. 265(1391), 147–154 (1998)CrossRefGoogle Scholar
  18. 18.
    Konaković, M., Crane, K., Deng, B., Bouaziz, S., Piker, D., Pauly, M.: Beyond developable: computational design and fabrication with auxetic materials. ACM Trans. Graph. 35(4), 89: 1–89:11 (2016)CrossRefGoogle Scholar
  19. 19.
    Lakes, R.: Foam structures with a negative poisson’s ratio. Science 235(4792), 1038–1040 (1987)CrossRefGoogle Scholar
  20. 20.
    Lakes, R.: Advances in negative poisson’s ratio materials. Adv. Mater. 5(4), 293–296 (1993)CrossRefGoogle Scholar
  21. 21.
    Lebee, A.: From folds to structures, a review. Int. J. Space Struct. 30(2), 55–74 (2015)CrossRefGoogle Scholar
  22. 22.
    Lee, J.H., Singer, J.P., Thomas, E.L.: Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24(36), 4782–4810 (2012)CrossRefGoogle Scholar
  23. 23.
    Li, Y.: The anisotropic behavior of poisson’s ratio, young’s modulus, and shear modulus in hexagonal materials. Phys. Status Solidi (a) 38(1), 171–175 (1976)CrossRefGoogle Scholar
  24. 24.
    Maldovan, M., Thomas, E.L.: Periodic structures and interference lithography. In: Periodic Materials and Interference Lithography: For Photonics, Phononics and Mechanics. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2008)Google Scholar
  25. 25.
    Miki, M., Murotsu, Y.: The peculiar behavior of the poisson’s ratio of laminated fibrous composites. Trans. Jpn. Soci.Mech. Eng. Ser. A 54(501), 970–976 (1988)CrossRefGoogle Scholar
  26. 26.
    Milton, G.: Composite materials with poisson’s ratios close to — 1. J. Mech. Phys. Solids 40, 1105–1137 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Owhadi, H., Zhang, L.: Metric-based upscaling. Commun. Pure Appl. Math. 60(5), 675–723 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P., Zorin, D.: Elastic textures for additive fabrication. ACM Trans. Graph. 34(4), 135:1–135:12 (2015)CrossRefGoogle Scholar
  29. 29.
    Popereka, M.Y., Balagurov, V.G.: Ferromagnetic films having a negative poisson’s ratio. Sov. Phys. Solid State 11, 2938–2943 (1970)Google Scholar
  30. 30.
    Ravirala, N., Alderson, A., Alderson, K.L., Davies, P.J.: Expanding the range of auxetic polymeric products using a novel melt-spinning route. Phys. Status Solidi B 242(3), 653–664 (2005)CrossRefGoogle Scholar
  31. 31.
    Ravirala, N., Alderson, K.L., Davies, P.J., Simkins, V.R., Alderson, A.: Negative poisson’s ratio polyester fibers. Text. Res. J. 76(7), 540–546 (2006)CrossRefGoogle Scholar
  32. 32.
    Schenk, M.: Geometry of miura-folded metamaterials. Proc. Natl. Acad. Sci. U. S. A. 370(1965), 3276–3281 (2013)CrossRefGoogle Scholar
  33. 33.
    Schniepp, H.C., Kudin, K.N., Li, J., Prud’homme, R.K., Car, R., Saville, D.A., Aksay, I.A.: Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2(12), 2577–2584 (2008)CrossRefGoogle Scholar
  34. 34.
    Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., Gross, M.: Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34(4), 136:1–136:13 (2015)CrossRefGoogle Scholar
  35. 35.
    Seffen, K.A.: Compliant shell mechanisms. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 370(1965), 2010–2026 (2012)CrossRefGoogle Scholar
  36. 36.
    Sigmund, O.: Design of material structures using topology optimization. PhD thesis, Technical University of Denmark (1994)Google Scholar
  37. 37.
    Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D., Cohen, I.: Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197), 647–650 (2014)CrossRefGoogle Scholar
  38. 38.
    Sloan, M.R., Wright, J.R., Evans, K.E.: The helical auxetic yarn – a novel structure for composites and textiles; geometry, manufacture and mechanical properties. Mech. Mater. 43(9), 476–486 (2011)CrossRefGoogle Scholar
  39. 39.
    Stewart, I.: Mathematics: some assembly needed. Nature 448(7152), 419 (2007)CrossRefGoogle Scholar
  40. 40.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York, NY (1969)Google Scholar
  41. 41.
    Tsai, S.W., Hahn, H.T.: Introduction to Composite Materials. Technomic, Lancaster, PA (1980)Google Scholar
  42. 42.
    Wang, Z., Hu, H.: 3D auxetic warp-knitted spacer fabrics. Phys. Status Solidi B 251(2), 281–288 (2014)CrossRefGoogle Scholar
  43. 43.
    Wei, Z.Y., Guo, Z.V., Dudte, L., Liang, H.Y., Mahadevan, L.: Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110, 215501 (2013)CrossRefGoogle Scholar
  44. 44.
    Wright, J.R., Sloan, M.R., Evans, K.E.: Tensile properties of helical auxetic structures: a numerical study. J. Appl. Phys. 108(4), 044905 (2010)CrossRefGoogle Scholar
  45. 45.
    You, Z.: Folding structures out of flat materials. Science 345(6197), 623–624 (2014)CrossRefGoogle Scholar
  46. 46.
    Zhou, S., Li, Q.: Design of graded two-phase microstructures for tailored elasticity gradients. J. Mater. Sci. 43(15), 51–57 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Bengisu Yılmaz
    • 1
  • Venera Adanova
    • 2
  • Rüyam Acar
    • 3
  • Sibel Tari
    • 2
  1. 1.Sabanci UniversityIstanbulTurkey
  2. 2.Middle East Technical UniversityAnkaraTurkey
  3. 3.Okan UniversityIstanbulTurkey

Personalised recommendations