Tools to Support SMEs to Migrate to the Cloud: Opportunities and Challenges

  • Heleno Cardoso da Silva Filho
  • Glauco de Figueiredo Carneiro
  • Ed Santana Martins Costa
  • Miguel Monteiro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 738)


The cloud computing paradigm represents a shift in the way companies deal with customizable and resourceful platforms to deploy software. It has been receiving increasing attention, partly due to its claimed financial and functional benefits. Cloud computing providers provide organizations with access to computing services without the need for those organizations to own the providing infrastructure. However, migration of legacy information systems to the cloud is not simple. This field is very dynamic and related technologies are rapidly evolving. For instance, Small and Medium Enterprises (SMEs) may not necessarily be well prepared to deal with issues such as multi-tenancy, elasticity, interoperability, and cloud services. With such issues in view, we searched for different types of tools referenced in the literature to support migration to the cloud and discussed related challenges and advantages of their use by SMEs.


Cloud computing Legacy systems Cloud migration Tools 


  1. 1.
    B. Martens, F. Teuteberg, Decision-making in cloud computing environments: a cost and risk based approach. Inf. Syst. Front. 14(4), 871–893 (2012)CrossRefGoogle Scholar
  2. 2.
    B.A. Aubert, J.-F. Houde, M. Patry, S. Rivard, A multi-level investigation of information technology outsourcing. J. Strateg. Inf. Syst. 21(3), 233–244 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Gunka, S. Seycek, H. Kühn, Moving an application to the cloud: an evolutionary approach, in Proceedings of the 2013 International Workshop on Multi-Cloud Applications and Federated Clouds (ACM, New York, 2013), pp. 35–42Google Scholar
  4. 4.
    M.F. Gholami, F. Daneshgar, G. Beydoun, F. Rabhi, Challenges in migrating legacy software systems to the cloud—an empirical study. Inf. Syst. 67, 100–113 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Yang, M. Tate, A descriptive literature review and classification of cloud computing research, in CAIS, vol. 31 (2012), p. 2Google Scholar
  6. 6.
    H.K. Cheng, Z. Li, A. Naranjo, Research note—cloud computing spot pricing dynamics: latency and limits to arbitrage. Inf. Syst. Res. 27(1), 145–165 (2016)CrossRefGoogle Scholar
  7. 7.
    M.F. Gholami, F. Daneshgar, G. Low, G. Beydoun, Cloud migration process—a survey, evaluation framework, and open challenges. J. Syst. Softw. 120, 31–69 (2016)CrossRefGoogle Scholar
  8. 8.
    V. Andrikopoulos, T. Binz, F. Leymann, S. Strauch, How to adapt applications for the cloud environment. Computing 95(6), 493–535 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Leimeister, M. Böhm, C. Riedl, H. Krcmar, The business perspective of cloud computing: actors, roles and value networks, in ECIS (2010), p. 56Google Scholar
  10. 10.
    B. Kitchenham, Procedures for performing systematic reviews, vol. 33, no. 2004 (Keele University, Keele, 2004), pp. 1–26Google Scholar
  11. 11.
    M.V. Mäntylä, B. Adams, F. Khomh, E. Engström, K. Petersen, On rapid releases and software testing: a case study and a semi-systematic literature review. Empir. Softw. Eng. 20(5), 1384–1425 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Khajeh-Hosseini, D. Greenwood, J.W. Smith, I. Sommerville, The cloud adoption toolkit: supporting cloud adoption decisions in the enterprise. Softw. Pract. Exp. 42(4), 447–465 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Menzel, R. Ranjan, Cloudgenius: decision support for web server cloud migration, in Proceedings of the 21st International Conference on World Wide Web (ACM, New York, 2012), pp. 979–988Google Scholar
  14. 14.
    M.F. Gholami, F. Daneshgar, G. Low, G. Beydoun, Cloud migration process—a survey, evaluation framework, and open challenges. J. Syst. Softw. 120, 31–69 (2016)CrossRefGoogle Scholar
  15. 15.
    J. García-Galán, P. Trinidad, O.F. Rana, A. Ruiz-Cortés, Automated configuration support for infrastructure migration to the cloud. Futur. Gener. Comput. Syst. 55, 200–212 (2016)CrossRefGoogle Scholar
  16. 16.
    K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Salamanca, F. Viera, F. Melo, J.M. Soto, White-box modernization of legacy applications: the oracle forms case study. Comput. Stand. Interf. 57, 110–122 (2017)CrossRefGoogle Scholar
  17. 17.
    N. Kratzke, P.-C. Quint, Understanding cloud-native applications after 10 years of cloud computing—a systematic mapping study. J. Syst. Softw. 126, 1–16 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Mouratidis, S. Islam, C. Kalloniatis, S. Gritzalis, A framework to support selection of cloud providers based on security and privacy requirements. J. Syst. Softw. 86(9), 2276–2293 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Fittkau, S. Frey, W. Hasselbring, Cdosim: simulating cloud deployment options for software migration support, in 2012 IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA) (IEEE, Piscataway, 2012), pp. 37–46Google Scholar
  20. 20.
    R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Soft. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  21. 21.
    S.K. Garg, R. Buyya, Networkcloudsim: modelling parallel applications in cloud simulations, in 2011 Fourth IEEE International Conference on Utility and Cloud Computing (UCC) (IEEE, Piscataway, 2011), pp. 105–113CrossRefGoogle Scholar
  22. 22.
    R. Zabolotnyi, P. Leitner, W. Hummer, S. Dustdar, Jcloudscale: closing the gap between IaaS and PaaS. ACM Trans. Internet Technol. (TOIT) 15(3), 10 (2015)Google Scholar
  23. 23.
    S. Frey, F. Fittkau, W. Hasselbring, Optimizing the deployment of software in the cloud. ACM Trans. Internet Technol. (TOIT) 15(3), 10 (2015)Google Scholar
  24. 24.
    A.W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S.U. Khan, R. Buyya, Cloudnetsim++: a toolkit for data center simulations in omnet++, in 2014 11th Annual High-Capacity Optical Networks and Emerging/Enabling Technologies (HONET) (IEEE, Piscataway, 2014), pp. 104–108Google Scholar
  25. 25.
    S. Frey, W. Hasselbring, B. Schnoor, Automatic conformance checking for migrating software systems to cloud infrastructures and platforms. J. Softw. Evol. Process 25(10), 1089–1115 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Frey, E. Schulz, M. Rau, K. Hesse, Cloudmig xpress 0.5 beta-user guide, in CloudMIG XPress 0.5 Beta User Guide. Christian Albrechts Universität Kiel, Software Engineering (2012), p. 3Google Scholar
  27. 27.
    R. Qasha, J. Cala, P. Watson, Towards automated workflow deployment in the cloud using tosca, in 2015 IEEE 8th International Conference on Cloud Computing (CLOUD) (IEEE, Piscataway, 2015), pp. 1037–1040CrossRefGoogle Scholar
  28. 28.
    R. Pérez-Castillo, I.G.-R. De Guzman, M. Piattini, Knowledge discovery metamodel-iso/iec 19506: a standard to modernize legacy systems. Comput. Stand. Interf. 33(6), 519–532 (2011)CrossRefGoogle Scholar
  29. 29.
    S.-H. Lim, B. Sharma, G. Nam, E.K. Kim, C.R. Das, Mdcsim: a multi-tier data center simulation, platform, in IEEE International Conference on Cluster Computing and Workshops, 2009. CLUSTER’09 (IEEE, Piscataway, 2009), pp. 1–9Google Scholar
  30. 30.
    A. Núñez, J.L. Vázquez Poletti, C. Caminero, G.G. Castañé, J.C. Pérez, I.M. Llorente, iCanCloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10(1), 185–209 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, M.N. Alsaleh, Teachcloud: a cloud computing educational toolkit. Int. J. Cloud Comput. 1 2(2–3), 237–257 (2013)Google Scholar
  32. 32.
    S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer, Groudsim: an event-based simulation framework for computational grids and clouds, in European Conference on Parallel Processing (Springer, Cham, 2010), pp. 305–313Google Scholar
  33. 33.
    B. Wickremasinghe, R.N. Calheiros, R. Buyya, Cloudanalyst: a cloudsim-based visual modeller for analysing cloud computing environments and applications, in 2010 24th IEEE International Conference on Advanced Information Networking and Applications (AINA) (IEEE, Piscataway, 2010), pp. 446–452Google Scholar
  34. 34.
    S.K. Gupta, R.R. Gilbert, A. Banerjee, Z. Abbasi, T. Mukherjee, G. Varsamopoulos, GDCSIM: a tool for analyzing green data center design and resource management techniques, in 2011 International Green Computing Conference and Workshops (IGCC) (IEEE, Piscataway, 2011), pp. 1–8Google Scholar
  35. 35.
    I. Sriram, SPECI, a simulation tool exploring cloud-scale data centres, in Cloud Computing (2009), pp. 381–392Google Scholar
  36. 36.
    P. Zoghi, M. Shtern, M. Litoiu, H. Ghanbari, Designing adaptive applications deployed on cloud environments, ACM Trans. Auton. Adapt. Syst. (TAAS) 10(4), 25 (2016)Google Scholar
  37. 37.
    P. Scandurra, G. Psaila, R. Capilla, R. Mirandola, Challenges and assessment in migrating it legacy applications to the cloud, in 2015 IEEE 9th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Environments (MESOCA) (IEEE, Piscataway, 2015), pp. 7–14Google Scholar
  38. 38.
    M. Lynch, T. Cerqueus, C. Thorpe, Testing a cloud application: Ibm smartcloud inotes: methodologies and tools, in Proceedings of the 2013 International Workshop on Testing the Cloud (ACM, New York, 2013), pp. 13–17Google Scholar
  39. 39.
    S.F. Piraghaj, A.V. Dastjerdi, R.N. Calheiros, R. Buyya, Containercloudsim: an environment for modeling and simulation of containers in cloud data centers. Softw. Pract. Exp. 47(4), 505–521 (2017)Google Scholar
  40. 40.
    S. Frey, W. Hasselbring, The cloudmig approach: model-based migration of software systems to cloud-optimized applications. Int. J. Adv. Softw. 4(3 and 4), 342–353 (2011)Google Scholar
  41. 41.
    E. Casalicchio, Autonomic orchestration of containers: problem definition and research challenges, in 10th EAI International Conference on Performance Evaluation Methodologies and Tools. EAI (2016)Google Scholar
  42. 42.
    A.N. Toosi, R.N. Calheiros, R. Buyya, Interconnected cloud computing environments: challenges, taxonomy, and survey. ACM Comput. Surv. (CSUR) 47(1), 7 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Heleno Cardoso da Silva Filho
    • 1
  • Glauco de Figueiredo Carneiro
    • 1
  • Ed Santana Martins Costa
    • 1
  • Miguel Monteiro
    • 2
  1. 1.Universidade Salvador (UNIFACS)SalvadorBrazil
  2. 2.NOVA-LINCSUniversidade Nova de Lisboa (FCT/UNL)LisbonPortugal

Personalised recommendations