Nanoscale Architecture for Controlling Cellular Mechanoresponse in Musculoskeletal Tissues

  • Francesco OlivaEmail author
  • Clelia Rugiero
  • Umberto Tarantino
  • Nicola Maffulli
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Cellular mechanoresponse is not very known yet, especially if we consider the function of nanoscale architecture. First, we need understand the tissue behavior on macroscale and how this feature is transduced in microscale. How the musculoskeletal system (bone, cartilage, tendons, muscles, and ligaments) responses to prestress and to external forces still is unknown for several aspects. Furthermore, focusing the attention to macroscale and microscale changes in the musculoskeletal system after injuries seems very interesting. Try to clarify this knowledge; it is very important to create nanoscale scaffolds able to better improve musculoskeletal tissue healing.


Musculoskeletal tissues healing Mechanotransduction Scaffolds Nanoscale engineering Bone Tendon Muscle Ligament 


  1. 1.
    Ingber DE. Integrins as mechanochemical tranducers. Curr Opin Cell Biol. 1991;3:841–8.CrossRefGoogle Scholar
  2. 2.
    Ingber DE. Tensegrity: the architectural basis of cellular mechanotranduction. Ann Rev Physiol. 1997;59:575–99.CrossRefGoogle Scholar
  3. 3.
    Rodan GA, Bourret LA, Harvey A, Mensi T. Cyclic AMP and cyclic GMP: mediators of the mechanical effects on bone remodeling. Science. 1975;189:467–9.CrossRefGoogle Scholar
  4. 4.
    Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Nat Acad Sci USA. 1986;83:2114–7.CrossRefGoogle Scholar
  5. 5.
    Jones DB, Scholubbers J-G. Evidence that phospholipase C mediates the mechanical stress response in bone. Calc Tiss Int. 1987;41(Suppl. 2):4.Google Scholar
  6. 6.
    Brighton CT, Strafford B, Gross SB, Leatherwood DF, Williams JL, Pollack SR. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone Joint Surg. 1991;73A:320–31.CrossRefGoogle Scholar
  7. 7.
    Sah RL-Y, Grodizinsky AJ, Plass AHK, Sandy JD. Effects of static and dynamic compression on matrix metabolism in cartilage explants. In: Kuettner K, et al. editors. Articular Cartilage and Osteoarthritis. New York: Raven Press, Ltd; 1992:373–92.Google Scholar
  8. 8.
    Bachrach NM, Valhmu WB, Stazzone E, Ratcliffe A, Lai WM, Mow VC. Changes in proteoglycan synthesis rates of chondrocytes in articular cartilage are associated with the time dependent changes in their mechanical environment. J Biomechanics. 1995;28:1561–9.CrossRefGoogle Scholar
  9. 9.
    Guilak F, Sah RL-Y, Setton LA. Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC, editors. Basic orthopaedic biomechanics. Philadelphia: Lippincott-Raven; 1997. p. 179–208.Google Scholar
  10. 10.
    Comper WD editor. Extracellular Matrix. Amsterdam, The Netherlands: Harwood Academic Press 1996, Vols I & II.Google Scholar
  11. 11.
    Sung KLP, Sung LA, Crimmins M, Burakoff SJ, Chien S. Dynamic changes in viscoelastic properties in cytotoxic T-lymphocytes mediating killing. J Cell Sci. 1988;91:179–89.PubMedGoogle Scholar
  12. 12.
    Dong C, Skalak R, Sung KP, Schmid-Schonbien GW, Chien S. Passive deformation analysis of human leukocytes. J Biomech Eng. 1998;110:27–36.CrossRefGoogle Scholar
  13. 13.
    Chen Christopher S, Ingber Donald E. Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthritis Cartilage. 1999;7:81–94.CrossRefGoogle Scholar
  14. 14.
    Viidik A. Tensile strength properties of achilles tendon systems in trained and untrained rabbits. Acta Orthop Scand. 1969;40:261–72.CrossRefGoogle Scholar
  15. 15.
    Tipton CM, Matthes RD, Maynard JA, et al. The influence of physical activity on ligaments and tendons. Med Sci Sports. 1975;7:165–75.PubMedGoogle Scholar
  16. 16.
    Lanyon LE, Rubin CT. Static versus dynamic loads as an influence on bone remodelling. J Biomech. 1984;17:897–905.CrossRefGoogle Scholar
  17. 17.
    Frost HM. Vital biomechanics. General concepts for structural adaptations to mechanical usage. Calc Tiss Int. 1987;42:145–54.Google Scholar
  18. 18.
    DeLee JC. Tissue remodeling and response to therapeutic exercise [review]. In: Leadbetter WB, Buckwalter JA, Gordon SL, editors. Sports-Induced Inflammation. AAOS: American Orthopaedic Society; 1989. p. 547–54.Google Scholar
  19. 19.
    Forwood MR, Turner CH. Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone. 1995;4(suppl):197S–205S.Google Scholar
  20. 20.
    Deng M, James R, Laurencin CT, Kumbar SG. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering. IEEE Trans Nanobiosci. 2012;11(1):3–14. Epub 2012 Jan 23.CrossRefGoogle Scholar
  21. 21.
    Ingber DE, Wang N, Stamenovic D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys. 2014;77(4):046603.CrossRefGoogle Scholar
  22. 22.
    Frost HM. A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod. 2004;74(1):3–15.PubMedGoogle Scholar
  23. 23.
    Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13:67–97.CrossRefGoogle Scholar
  24. 24.
    Martin RB, Burr DB. Structure, function, and adaptation of compact bone. New York: Raven Press; 1989.Google Scholar
  25. 25.
    Silbert JE. Advances in the biochemistry of proteoglycans. In: Uitto J, Perejda AJ, editors. Connective tissue disease: molecular pathology of the extracellular matrix. New York: Marcel Dekker; 1987. p. 83–98.Google Scholar
  26. 26.
    Mow VC, Ratcliffe A. Structure and function of articular cartilage. In: Mow VC, Hayes WC, editors. Basic orthopaedic biomechanics. Philadelphia, PA: Lippincott-Raven; 1997. p. 113–77.Google Scholar
  27. 27.
    Guilak F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech. 1995;28:1529–41.CrossRefGoogle Scholar
  28. 28.
    Guilak F, Ratcliffe A, Mow VC. Chondrocyte deformation and local tissue strains in articular cartilage: a confocal microscopy study. J Orthop Res. 1995;13:410–21.CrossRefGoogle Scholar
  29. 29.
    Nimni ME. Collagen: structure, function, and metabolism in normal and fibrotic tissues. Sem Arth Rheum. 1983;13:1–86.CrossRefGoogle Scholar
  30. 30.
    Woo SL-Y, Gomez MA, Woo YK, Akeson WH. Mechanical properties of tendons and ligaments. Quasistatic and nonlinear viscoelastic properties. Biorheology 1982;19:385–96.CrossRefGoogle Scholar
  31. 31.
    Dickinson RB, Guido S, Tranquillo RT. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng. 1994;22:342–56.CrossRefGoogle Scholar
  32. 32.
    Chen BM, Grinnell AD. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science. 1995;269:1578–80.CrossRefGoogle Scholar
  33. 33.
    Hamill OP, McBride DW Jr. The cloning of a mechano-gated membrane ion channel. Trends Neurosci. 1994;17:439–45.CrossRefGoogle Scholar
  34. 34.
    Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims J, Wang N. Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol. 1994;150:173–224.CrossRefGoogle Scholar
  35. 35.
    Plopper G, McNamee H, Dike L, Bojanowski K, Ingber DE. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 1995;6:1349–65.CrossRefGoogle Scholar
  36. 36.
    Miyamoto S, Akiyama S, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995;267:883–5.CrossRefGoogle Scholar
  37. 37.
    Buxbaum RE, Heidemann SR. A thermodynamic model for force integration and microtubule assembly during axonal elongation. J Theor Biol. 1988;134:379–90.CrossRefGoogle Scholar
  38. 38.
    Yao L, Bestwick CS, Bestwick LA, Maffulli N, Aspden RM. Phenotypic drift in human tenocyte culture. Tissue Eng. 2006;12(7):1843–9.CrossRefGoogle Scholar
  39. 39.
    Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008;97(2–3):163–79. Scholar
  40. 40.
    Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro AT, Cuzzocrea S, Calabrese EJ, Calabrese V. Osteoporosis and Alzheimer pathology: role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol. 2014;5.Google Scholar
  41. 41.
    Barbieri E, Sestili P, Vallorani L, Guescini M, Calcabrini C, Gioacchini AM, Annibalini G, Lucertini F, Piccoli G, Stocchi V. Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach. MLTJ. 2013.Google Scholar
  42. 42.
    Ji LL, Gomez-Cabrera MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci. 2006;1067:425–35.CrossRefGoogle Scholar
  43. 43.
    Rattan SI. Targeting the age-related occurrence, removal, and accumulation of molecular damage by hormesis. Ann N Y Acad Sci. 2010;1197:28–32. Scholar
  44. 44.
    Hamel P, Abed E, Brissette L, Moreau R. Characterization of oxidized low-density lipoprotein-induced hormesis-like effects in osteoblastic cells. Am J Physiol Cell Physiol. 2008;294:C1021–33.CrossRefGoogle Scholar
  45. 45.
    Delaine-Smith R, Reilly GC. Mesenchymal stem cell responses to mechanical stimuli. MLTJ. 2012.Google Scholar
  46. 46.
    Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8(3):301–16.CrossRefGoogle Scholar
  47. 47.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.CrossRefGoogle Scholar
  48. 48.
    Hao W, Dong J, Jiang M, Wu J, Cui F, Zhou D. Enhanced bone formation in large segmental radial defects by combining adipose-derived stem cells expressing bone morphogenetic protein 2 with nHA/RHLC/PLA scaffold. Int Orthop. 2010;34(8):1341–9.CrossRefGoogle Scholar
  49. 49.
    Whu SW, Tsai CL, Hsu SH. Evaluation of human bone marrow mesenchymal stem cells seeded into composite scaffolds and cultured in a dynamic culture system for neocartilage regeneration in vitro. J Med Biol Eng. 2009;29(2):52–9.Google Scholar
  50. 50.
    Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science. 2005;308(5727):1472–7.CrossRefGoogle Scholar
  51. 51.
    Watanabe T, Sakai D, Yamamoto Y, Iwashina T, Serigano K, Tamura F, Mochida J. Human nucleus pulposus cells significantly enhanced biological properties in a co-culture system with direct cell-to-cell contact with autologous mesenchymal stem cells. J Orthop Res. 2010;28(5):623–30.PubMedGoogle Scholar
  52. 52.
    Yu H, Vandevord PJ, GongW WuB, Song Z, Matthew HW, Wooley PH, Yang SY. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J Orthop Res. 2008;26(8):1147–52.CrossRefGoogle Scholar
  53. 53.
    Ozturk AM, Cila E, Kanatli U, Isik I, Senkoylu A, Uzunok D, Piskin E. Treatment of segmental bone defects in rats by the stimulation of bonemarrow osteo-progenitor cells with prostaglandin E2. Int Orthop. 2005;29(2):73–7.CrossRefGoogle Scholar
  54. 54.
    Chen KY, Chung CM, Kuo SM, Chen YS, Yao CH. Influence of collagen I nanospheres on the growth and osteogenic difference of rat bone marrow stromal cells. J Med Biol Eng. 2009;29(6):284–9.Google Scholar
  55. 55.
    Jung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B, Havens A, Schneider A, Ge C, Franceschi RT, McCauley LK, Krebsbach PH, Taichman RS. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells. 2008;26(8):2042–51.CrossRefGoogle Scholar
  56. 56.
    Borovecki F, Pecina-Slaus N, Vukicevic S. Biological mechanisms of bone and cartilage remodelling-genomic perspective. Int Orthop. 2007;31(6):799–805.CrossRefGoogle Scholar
  57. 57.
    Li M, Thompson DD, Paralkar VM. Prostaglandin E-2 receptors in bone formation. Int Orthop. 2007;31(6):767–72.CrossRefGoogle Scholar
  58. 58.
    Tsai MT, Lin DJ, Huang S, Lin HT, Chang WH. Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell–cell contact between murine osteoblasts and mesenchymal stem cells. Int Orthop (SICOT). 2012;36:199–205.CrossRefGoogle Scholar
  59. 59.
    Kim H, Lee JH, Suh H. Interaction of mesenchymal stem cells and osteoblasts for in vitro osteogenesis. Yonsei Med J. 2003;44(2):187–97.CrossRefGoogle Scholar
  60. 60.
    Ahn SE, Kim S, Park KH, Moon SH, Lee HJ, Kim GJ, Lee YJ, Park KH, Cha KY, Chung HM. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun. 2006;340(2):403–8.CrossRefGoogle Scholar
  61. 61.
    Delaine-Smith R, Reilly GC. Mesenchymal stem cell responses to mechanical stimuli. MLTJ. 2012.Google Scholar
  62. 62.
    Ytteborg E, Torgersen JS, Pedersen ME, Helland SJ, Grisdale-Helland B, Takle H. Exercise induced mechano-sensing and substance P mediated bone modeling in Atlantic salmon. Bone. 2013;53(1):259–68. Epub 2012 Dec 3.CrossRefPubMedGoogle Scholar
  63. 63.
    Oliva F, Tarantino U, Maffulli N. Immunohistochemical localization of calcitonin gene-related peptide and substance P in the rat knee cartilage at birth. Physiol Res. 2005;54:549–56.PubMedGoogle Scholar
  64. 64.
    Niissalo S, Hukkanen M, Imai S, Tornwall J, Kottinen YT. Neuropeptides in experimental and degenerative arthritis. Ann N Y Acad Sci. 2002;966:384–99.CrossRefGoogle Scholar
  65. 65.
    McDougall JJ, Bray RC, Sharkey KA. Morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit, and human knee joints. Anat Rec. 1997;248:29–39.CrossRefGoogle Scholar
  66. 66.
    Fortier LA, Nixon AJ. Distributional changes in substance P nociceptive fiber patterns in naturally osteoarthritic articulations. J Rheumatol. 1997;24:524–30.PubMedGoogle Scholar
  67. 67.
    Kashihara Y, Sakaguchi M, Kuno M. Axonal transport and distribution of endogenous calcitonin generelated peptide in rat peripheral nerve. J Neurosci. 1989;9:3796–802.CrossRefGoogle Scholar
  68. 68.
    Konttinen YT, Imai S, Suda A. Neuropeptides and the puzzle of bone remodeling. Acta Orthop Scand. 1996;67:632–9.CrossRefGoogle Scholar
  69. 69.
    Ackermann PW, Ahmed M, Kreicbergs A. Early nerve regeneration after Achilles tendon rupture—a prerequisite for healing? A study in the rat. J Orthop Res. 2002;20:849–56.CrossRefGoogle Scholar
  70. 70.
    Salo PT, Seeratten RA, Erwin WM, Bray RC. Evidence for a neuropathic contribution to the development of spontaneous knee osteoarthrosis in a mouse model. Acta Orthop Scand. 2002;73:77–84.CrossRefGoogle Scholar
  71. 71.
    Madsen JE, Hukkanen M, Aspenberg P, Polak J, Nordsletten L. Time-dependent sensory nerve ingrowth into a bone conduction chamber. Acta Orthop Scand. 2000;71:74–9.CrossRefGoogle Scholar
  72. 72.
    Modesti A, Oliva F. All is around ECM of tendons!? MLTJ. 2013.Google Scholar
  73. 73.
    Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function. Sci World J. 2007;7:404–20.CrossRefGoogle Scholar
  74. 74.
    Bei R, Masuelli L, Palumbo C, Tresoldi I, Scardino A, Modesti A. Long-lasting tissue inflammatory processes trigger autoimmune responses to extracellular matrix molecules. Int Rev Immunol. 2008;27:137–75.CrossRefGoogle Scholar
  75. 75.
    Connizzo BK, Yannascoli SM, Soslowsky LJ. Structure-function relationships of postnatal tendon development: a parallel to healing. Matrix Biol. 2013;32:106–16.CrossRefGoogle Scholar
  76. 76.
    Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am. 2005;87:187–202.PubMedGoogle Scholar
  77. 77.
    Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact. 2006;6:181–90.PubMedGoogle Scholar
  78. 78.
    Tresoldi I, Oliva F, Benvenuto M, Fantini M, Masuelli L, Bei R, Modesti A. Tendon’s ultrastructure. MLTJ. 2013.Google Scholar
  79. 79.
    Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92:1651–97.CrossRefGoogle Scholar
  80. 80.
    Zimny ML. Mechanoreceptors in articular tissues. Am J Anat. 1988;182:16–32.CrossRefGoogle Scholar
  81. 81.
    Abbot LC, Saunders JB, Dec M, et al. Injuries to the ligaments of the knee. J Bone Joint Surg. 1944;26:503–21.Google Scholar
  82. 82.
    Michelson JD, Hutchins C. Mechanoreceptors in human ankle ligaments. J Bone Joint Surg Br. 1995;77:219–24.CrossRefGoogle Scholar
  83. 83.
    Hogervorst T, Brand RA. Mechanoreceptors in joint function. J Bone Joint Surg Am. 1998;80:1365–78.CrossRefGoogle Scholar
  84. 84.
    Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, et al. Retention versus sacrifice of the posterior cruciate ligament in total knee arthroplasty for treating osteoarthritis. Cochrane Database Syst Rev. 2013;11:10.Google Scholar
  85. 85.
    Raunest J, Sager M, Bürgener E. Proprioception of the cruciate ligaments: receptor mapping in an animal model. Arch Orthop Trauma Surg. 1998;118:159–63.CrossRefGoogle Scholar
  86. 86.
    Abbott LC, Saunders JB, Dec M, et al. Injuries to the ligament of the knee joint. J Bone Joint Surg. 1944;26:503–21.Google Scholar
  87. 87.
    Schultz R, Miller D, Kerr C, et al. Mechanoreceptors in human cruciate ligaments. A histological study. J Bone Joint Surg Am. 1984;66:1072–6.CrossRefGoogle Scholar
  88. 88.
    Halata Z, Rettig T, Schulze W. The ultrastructure of sensory nerve endings in human knee joint capsule. Anat Embryol. 1985;172:265–76.CrossRefGoogle Scholar
  89. 89.
    Kapreli E, Athanasopoulos S, Gliatis J, Papathanasiou M, Peeters R, Strimpakos N, Van Hecke P, Gouliamos A, Sunaert S. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):2419–26.CrossRefGoogle Scholar
  90. 90.
    Dhillon MS, Bali K, Prabhakar S. Differences among mechanoreceptors in healthy and injured anterior cruciate ligaments and their clinical importance. MLTJ. 2012;2(1):38–43.Google Scholar
  91. 91.
    Scott JJ, Petit J, Davies P. The dynamic response of feline Golgi tendon organs during recovery from nerve injury. Neurosci Lett. 1996;207:179–82.CrossRefGoogle Scholar
  92. 92.
    Sha L, Zhao L. Quantitative study on mechanoreceptors in tibial remnants of ruptured anterior cruciate ligament in human knees. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24:1318–22.PubMedGoogle Scholar
  93. 93.
    Haftel VK, Bichler EK, Wang QB, Prather JF, Pinter MJ, et al. Central suppression of regenerated proprioceptive afferents. J Neurosci. 2005;25:4733–42.CrossRefGoogle Scholar
  94. 94.
    Jami L. Functional properties of the Golgi tendon organs. Arch Int Physiol Biochim. 1988;96:363–78.Google Scholar
  95. 95.
    Scott JJ, Panesar G. Small-signal sensitivity of muscle spindles reinnervated after long-term denervation. Brain Res. 1995;671:325–8.CrossRefGoogle Scholar
  96. 96.
    Kaya D, editor. Proprioception: the forgotten sixth sense. Chapter: muscle, tendon, ligament tear and proprioception. OMICS Group eBooks, 2014.Google Scholar
  97. 97.
    Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008;3(3):034002. Epub 8 Aug 2008.CrossRefGoogle Scholar
  98. 98.
    Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2011;17(5–6):831–40. Epub 2010 Dec 14.CrossRefPubMedGoogle Scholar
  99. 99.
    Forman JR, Qamar S, Paci E, Sandford RN, Clarke J. The remarkable mechanical strength of polycystin-1 supports a direct role in mechanotransduction. J Mol Biol. 2005;349(4):861–71.CrossRefGoogle Scholar
  100. 100.
    Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/b-catenin pathway. PLOS ONE. March 2014.CrossRefGoogle Scholar
  101. 101.
    Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater. 2015;10(1):015018. Scholar
  102. 102.
    Shalumon KT, Chennazhi KP, Tamura H, Kawahara K, Nair SV, Jayakumar R. Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly(lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique. IET Nanobiotechnol. 2012;6(1):16–25. Scholar
  103. 103.
    Schagemann JC, Paul S, Casper ME, Rohwedel J, Kramer J, Kaps C, Mittelstaedt H, Fehr M, Reinholz GG. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds. J Biomed Mater Res A. 2013;101(6):1620–8. Epub 2012 Nov 27.CrossRefPubMedGoogle Scholar
  104. 104.
    Spoliti M, Iudicone P, Leone R, De Rosa A, Rossetti FR, Pierelli L. In vitro release and expansion of mesenchymal stem cells by a hyaluronic acid scaffold used in combination with bone marrow. MLTJ. 2012.Google Scholar
  105. 105.
    Guevara-Alvarez A, Schmitt A, Russell RP, Imhoff AB, Buchmann S. Growth factor delivery vehicles for tendon injuries: mesenchymal stem cells and platelet rich plasma. MLTJ. 2014.Google Scholar
  106. 106.
    Della Porta G, Campardelli R, Falco N, Reverchon E. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts. J Pharm Sci. 2011. Scholar
  107. 107.
    Della Porta G, Reverchon E. Continuous supercritical emulsions extraction: a new technology for biopolymer microparticles production. Biotechnol Bioeng J. 2011;108(3):676–86.CrossRefGoogle Scholar
  108. 108.
    Cardea S, Pisanti P, Reverchon E. Generation of chitosan nanoporous structures for tissue engineering applications using a supercritical fluid assisted process. J Supercrit Fluids. 2010;54:290–5.CrossRefGoogle Scholar
  109. 109.
    Della Porta G, Cavalcanti S, Reverchon E. Supercritical Fluid emulsions extraction: a novel technology for the production of poly-lactic-co-glycolic nanostructured microdevices. In: Proceedings of II Congresso Nazionale di Bioingegneria; 2010 July 8–10; Turin (Italy): Patron, p. 637–8, ISBN 978-88-555-3082-8.Google Scholar
  110. 110.
    Reverchon E, Adami R, Cardea S, Della Porta G. Supercritical fluids processing of polymers for pharmaceutical and medical applications. J Supercrit Fluids. 2009;47:484–92.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francesco Oliva
    • 1
    Email author
  • Clelia Rugiero
    • 1
  • Umberto Tarantino
    • 1
  • Nicola Maffulli
    • 2
    • 3
    • 4
  1. 1.Department of Orthopaedic and Traumatology, School of MedicineUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Centre for Sports and Exercise MedicineQueen Mary University of LondonLondonUK
  3. 3.Barts and The London School of Medicine and DentistryMile End Hospital LondonLondonUK
  4. 4.Department of Physical and Rehabilitation MedicineUniversity of SalernoFiscianoItaly

Personalised recommendations