Aggregate Path Coupling: Higher Dimensional Theory

Part of the SpringerBriefs in Probability and Mathematical Statistics book series (SBPMS )


In this chapter, we extend the aggregate path coupling technique derived in the previous section for the Blume-Capel model to a large class of statistical mechanical models that is disjoint from the mean-field Blume-Capel model. The aggregate path coupling method presented here extends the classical path coupling method for Gibbs ensembles in two directions. First, we consider macroscopic quantities in higher dimensions and find a monotone contraction path by considering a related variational problem in the continuous space. We also do not require the monotone path to be a nearest-neighbor path. In fact, in most situations we consider, a nearest-neighbor path will not work for proving contraction. Second, the aggregation of the mean path distance along a monotone path is shown to contract for some but not all pairs of configurations. Yet, we use measure concentration and large deviation principle to show that proving contraction for pairs of configurations, where at least one of them is close enough to the equilibrium, is sufficient for establishing rapid mixing.


  1. 1.
    D. Aldous, J. Fill, Reversible Markov chains and random walks on graphs, in Unfinished Monograph (2002). Available at
  2. 2.
    N. Bhatnagar, D. Randall, Torpid mixing of simulated tempering on the Potts model, in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 478–487 (2004)Google Scholar
  3. 3.
    M. Blume, Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141, 517–524 (1966)CrossRefGoogle Scholar
  4. 4.
    M. Blume, V. J. Emery, R.B. Griffiths, Ising model for the λ transition and phase separation in He3-He4 mixtures. Phys. Rev. A 4, 1071–1077 (1971)CrossRefGoogle Scholar
  5. 5.
    M.  Bordewich, M.E.  Dyer, Path coupling without contraction. J. Discrete Algorithms 5(2), 280–292 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Texts in Applied Mathematics, vol. 31 (Springer, New York, 1999)CrossRefGoogle Scholar
  7. 7.
    R.  Bubley, M.E.  Dyer, Path coupling: a technique for proving rapid mixing in Markov chains, in Proceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 223–231 (1997)Google Scholar
  8. 8.
    H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966–988 (1966)CrossRefGoogle Scholar
  9. 9.
    H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting II. Physica 33, 295–331 (1967)CrossRefGoogle Scholar
  10. 10.
    H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting III. Physica 37, 423–441 (1967)CrossRefGoogle Scholar
  11. 11.
    F. Collet, Macroscopic limit of a bipartite Curie-Weiss model: a dynamical approach. J. Stat. Phys. 157(6), 1301–1319 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Costeniuc, R.S. Ellis, H. Touchette, Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model. J. Math. Phys. 46, 063301 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. Cuff, J. Ding, O. Louidor, E. Lubetzy, Y. Peres, A. Sly, Glauber dynamics for the mean-field Potts model. J. Stat. Phys. 149(3), 432–477 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Dembo, O. Zeitouni, Large deviations techniques and applications, 2nd edn. (Springer, New York, 1998)CrossRefGoogle Scholar
  15. 15.
    F. den Hollander, Probability Theory: The Coupling Method. Lectures Notes-Mathematical Institute (Leiden University, Leiden, 2012)Google Scholar
  16. 16.
    J. Ding, E. Lubetzky, Y. Peres, The mixing time evolution of Glauber dynamics for the mean-field Ising model. Commun. Math. Phys. 289(2), 725–764 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Ding, E. Lubetzky, Y. Peres, Censored Glauber dynamics for the mean-field Ising model. J. Stat. Phys. 137(1), 161–207 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    W. Doeblin, Exposé de la théorie des chaınes simples constantes de Markova un nombre fini d’états. Mathématique de l’Union Interbalkanique 2(77–105), 78–80 (1938)zbMATHGoogle Scholar
  19. 19.
    M. Dyer, L.A. Goldberg, C. Greenhill, M. Jerrum, M. Mitzenmacher, An extension of path coupling and its application to the Glauber dynamics for graph colorings. SIAM J. Comput. 30(6), 1962–1975 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Ebbers, H. Knöpfel, M. Löwe, F. Vermet, Mixing times for the swapping algorithm on the Blume-Emery-Griffiths model. Random Struct. Algoritm. (2012).
  21. 21.
    T. Eisele, R.S.  Ellis, Multiple phase transitions in the generalized Curie-Weiss model. J. Stat. Phys. 52(1/2), 161–207 (1988).MathSciNetCrossRefGoogle Scholar
  22. 22.
    R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985). Reprinted in 2006 in Classics in Mathematics Google Scholar
  23. 23.
    R.S. Ellis, K. Wang, Limit theorems for the empirical vector of the Curie-Wiess-Potts model. Markov Proc. Their Appl. 35, 59–79 (1990)CrossRefGoogle Scholar
  24. 24.
    R.S. Ellis, K. Haven, B. Turkington, Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101(5/6), 999–1064 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    R.S. Ellis, P.T. Otto, H. Touchette, Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model. Ann. Appl. Probab. 15, 2203–2254 (2005)MathSciNetCrossRefGoogle Scholar
  26. 26.
    R.S. Ellis, J. Machta, P.T. Otto, Asymptotic behavior of the magnetization near critical and tricritical points via Ginzburg-Landau polynomials. J. Stat. Phys. 133, 101–129 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.S. Ellis, J. Machta, P.T. Otto, Asymptotic behavior of the finite-size magnetization as a function of the speed of approach to criticality. Ann. Appl. Probab. 20, 2118–2161 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Fedele, F. Unguendoli, Rigorous results on the bipartite mean-field model. J. Phys. A: Math. Theor. 45(38), 385001 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    T.P. Hayes, A. Sinclair, A general lower bound for mixing of single-site dynamics on graphs, in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pp. 511–520 (2005)Google Scholar
  30. 30.
    T.P.  Hayes, E.  Vigoda, Variable length path coupling. Random Struct. Algoritm. 31(3), 251–272 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    J.C. Hernández, Y. Kovchegov, P.T. Otto, The aggregate path coupling method for the Potts model on bipartite graph. J. Math. Phys. 58, 023303 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    G. Jaeger, Ehrenfest classification of phase transitions: introduction and evolution. Arch. Hist. Exact Sci. 53, 51–81 (1998)MathSciNetCrossRefGoogle Scholar
  33. 33.
    B. Jahnel, C. Külske, E.  Rudelli, J. Wegener, Gibbsian and non-Gibbsian properties of the generalized mean-field fuzzy Potts-model. Markov Proc. Relat. Fields 20, 601–632 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Y. Kovchegov, P.T. Otto, Rapid mixing of Glauber dynamics of Gibbs ensembles via aggregate path coupling and large deviations methods. J. Stat. Phys. 161(3), 553–576 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Kovchegov, P.T. Otto, M. Titus, Mixing times for the mean-field Blume-Capel model via aggregate path coupling. J. Stat. Phys. 144(5), 1009–1027 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Levin, Y.  Peres, E.  Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, RI, 2009)zbMATHGoogle Scholar
  37. 37.
    D.A. Levin, M. Luczak, Y. Peres, Glauber dynamics of the mean-field Ising model: cut-off, critical power law, and metastability. Probab. Theory Relat. Fields 146(1), 223–265 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    T.M. Liggett, Interacting Particle Systems (Springer, Berlin, 1985)CrossRefGoogle Scholar
  39. 39.
    T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes (Springer, Berlin, 1999)CrossRefGoogle Scholar
  40. 40.
    T. Lindvall, Lectures on the Coupling Method (Wiley, New York, 1992). Reprint: Dover paperback edition (2002)Google Scholar
  41. 41.
    M.J. Luczak, Concentration of measure and mixing times of Markov chains, in Proceedings of the 5th Colloquium on Mathematics and Computer Science. Discrete Mathematics and Theoretical Computer Science, pp. 95–120 (2008)Google Scholar
  42. 42.
    R.V. Solé, Phase Transitions (Princeton University Press, Princeton, NJ, 2011)zbMATHGoogle Scholar
  43. 43.
    S.R.S. Varadhan, Asymptotic properties and differential equations. Commun. Pure Appl. Math. 19, 261–286 (1966)CrossRefGoogle Scholar
  44. 44.
    F.Y. Wu, The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018 2018

Authors and Affiliations

  1. 1.Department of MathematicsOregon State UniversityCorvallisUSA
  2. 2.Department of MathematicsWillamette UniversitySalemUSA

Personalised recommendations