Advertisement

Residual Stress and Texture Evolution on Surface of 304L TRIP Steel Sheet Subjected to FLC Test

  • I. S. Oliveira
  • J. M. Alves
  • R. A. Botelho
  • A. S. Paula
  • L. P. M. Brandão
  • M. C. Cardoso
  • L. P. Moreira
  • M. C. S. Freitas
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The martensite formation in the outer and inner blank sheet surfaces of the metastable 304L austenitic stainless steel subjected to the Forming Limit Curve (FLC) testing, performed according to the Marciniak method, was analysed in regions located near and away from the failure site. X-ray Diffraction (XRD) was also used for residual stress and texture quantification related to strain-induced martensitic phase transformation resulting from distinct stress and strain trajectories associated to FLC specimens. From the results were observed some aspects as greater diversity in the martensite formation and austenite hardening at outer sheet surface that are correlated to residual stress and austenite textural evolution.

Keywords

304L austenitic stainless steel FLC curve Phase transformation Residual stress Texture 

Notes

Acknowledgements

The authors acknowledge the Aperam South America (steel sheets supplier) and USIMINAS (conducted the FLC tests). JMA acknowledge the funding of Faperj (PhD scholarship related to “Aluno nota 10”). LPM acknowledge the funding of CNPq (research productivity scholarship PQ and Universal Program 2012). RB and ASP acknowledge the funding of CNPq (PhD scholarship and research productivity scholarship PQ-2—Process 307798/2015-1).

References

  1. 1.
    Souza JFP (2006) Propriedades mecânicas de aços inoxidáveis austeníticos nitretados submetidos à hidrogenação catódica. Master thesis, UFPR, Curitiba/PR, BrazilGoogle Scholar
  2. 2.
    Iawamoto T, Tsuta T, Tomita Y (1998) Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modelling of transformation kinetics. 40:173–182, Elsevier ScienceGoogle Scholar
  3. 3.
    Cina B (1954) J Iron Steel Inst 791Google Scholar
  4. 4.
    Lichtenfeld JA, Mataya MC, van Tyne CJ (2006) Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel. Metall Trans A 37A:147–161CrossRefGoogle Scholar
  5. 5.
    Olsen GB, Cohen M (1975) Kinetics of strain-induced martensitic nucleation. Metall Trans A 6A:791–795CrossRefGoogle Scholar
  6. 6.
    Andrade-Campos A, Teixeira-Dias F, Krupp U, Barlat F, Rauch EF, Grácio JJ (2010) Effect of strain rate, adiabatic heating and phase transformation phenomena on the mechanical behaviour of stainless steel. Strain 46:283–297CrossRefGoogle Scholar
  7. 7.
    Angel T (1954) Formation of martensite in austenitic steels. J Iron Steel Inst 5:165–174Google Scholar
  8. 8.
    Krupp U, West C, Duan HP, Christ HJ (2002) Strain-induced martensite formation in metastable austenitic steels with varying carbon content. Z Metallkd 7:706–711CrossRefGoogle Scholar
  9. 9.
    Noyan IC, Cohen JB (1987) Residual stress measurement by diffraction and interpretation. Springer, New York, p 265Google Scholar
  10. 10.
    Hosford WF (1993) The mechanics of crystals and textured polycrystals. OxfordGoogle Scholar
  11. 11.
    Raabe D (1997) Texture and microstructure evolution during cold rolling of a strip cast and of a hot rolled austenitic stainless steel. Acta Mater 45(3):1137–1151CrossRefGoogle Scholar
  12. 12.
    Bresciani Filho E, Zavaglia CAC, Button ST, Gomes E, Nery FAC (1991) Conformação plástica dos metais, 4ª edição, Editora da UnicampGoogle Scholar
  13. 13.
    Hosford WF, Caddell RM (1993) Metal forming—mechanics and metallurgyGoogle Scholar
  14. 14.
    Tourki Z, Bargui H, Sidhom H (2005) The kinetic of induced martensitic formation and its effect on forming limit curves in the AISI 304 stainless steel. J Mater Process Technol 166:330–336CrossRefGoogle Scholar
  15. 15.
    Cardoso MC (2012) Avaliação do comportamento plástico de uma chapa de aço inoxidável austenítico 304L por meio de ensaios de tração uniaxial e curva limite de conformação. Master thesis, PPGEM-UFF, Volta Redonda/RJ, BrazilGoogle Scholar
  16. 16.
    Oliveira IS, Paula AS, Cardoso MC, Moreira LP, Freitas MCS (2014) Estudo comparativo do comportamento mecânico e evolução estrutural de chapas de aços 304L submetidos a ensaio CLC. In: 69º congresso anual da, ABM, São Paulo, BrazilGoogle Scholar
  17. 17.
    Oliveira IS, Paula AS, Cardoso MC, Moreira LP, Freitas MCS (2015) Estudo comparativo do comportamento mecânico e evolução estrutural de chapas de aço inoxidável austenítico 304L submetidas a ensaio CLC”. In: 8º congresso brasileiro de engenharia de fabricação, Salvador/Bahia, BrazilGoogle Scholar
  18. 18.
    Oliveira IS, Paula AS, Cardoso MC, Andrade JG, Vieira TF, Almeida GM, Moreira LP, Freitas MCS (2013) Avaliação da fração de martensita pré-existente em chapa de aço inoxidável 304L laminado a frio e recozido. In: Proceedings of international 50th rolling seminar—processes, rolled and coated products, ABM, Ouro Preto/MG, BrazilGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • I. S. Oliveira
    • 1
  • J. M. Alves
    • 2
  • R. A. Botelho
    • 2
  • A. S. Paula
    • 2
  • L. P. M. Brandão
    • 2
  • M. C. Cardoso
    • 3
  • L. P. Moreira
    • 1
  • M. C. S. Freitas
    • 1
  1. 1.Department of Mechanical EngineeringUniversidade Federal Fluminense, Avenida dos TrabalhadoresRio de JaneiroBrazil
  2. 2.Department of Mechanical and Materials EngineeringInstituto Militar de Engenharia (IME), Praça General TibúrcioRio de JaneiroBrazil
  3. 3.Department of Chemical and Materials EngineeringUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations