NOA: A Search Engine for Reusable Scientific Images Beyond the Life Sciences

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10772)


NOA is a search engine for scientific images from open access publications based on full text indexing of all text referring to the images and filtering for disciplines and image type. Images will be annotated with Wikipedia categories for better discoverability and for uploading to WikiCommons. Currently we have indexed approximately 2,7 Million images from over 710 000 scientific papers from all fields of science.


Open access Image retrieval 



We would like to thank Frieda Josi, Lambert Heller, Ina Blümel for many helpful comments. This research was funded by the DFG under grant no. WA 1506/4-1.


  1. 1.
    Agarwal, S., Yu, H.: FigSum: automatically generating structured text summaries for figures in biomedical literature. In: AMIA Annual Symposium Proceedings. AMIA Symposium 2009, pp. 6–10, November 2009Google Scholar
  2. 2.
    Hearst, M.A., Divoli, A., Guturu, H., Ksikes, A., Nakov, P., Wooldridge, M.A., Ye, J.: BioText search engine: beyond abstract search. Bioinformatics 23(16), 2196–2197 (2007). CrossRefGoogle Scholar
  3. 3.
    Kim, D., Ramesh, B.P., Yu, H.: Automatic figure classification in bioscience literature. J. Biomed. Inf. 44(5), 848–858 (2011). CrossRefGoogle Scholar
  4. 4.
    Kim, D., Yu, H.: Hierarchical image classification in the bioscience literature. In: AMIA Annual Symposium Proceedings 2009, pp. 327–331 (2009).
  5. 5.
    Lee, P., West, J.D., Howe, B.: Viziometrics: analyzing visual information in the scientific literature. IEEE Trans. Big Data (2017)Google Scholar
  6. 6.
    Liu, F., Jenssen, T.K., Nygaard, V., Sack, J., Hovig, E.: FigSearch: a figure legend indexing and classification system. Bioinformatics 20(16), 2880–2882 (2004). CrossRefGoogle Scholar
  7. 7.
    Rafkind, B., Lee, M., Chang, S.F., Yu, H.: Exploring text and image features to classify images in bioscience literature. In: Proceedings of the Workshop on Linking Natural Language Processing and Biology: Towards Deeper Biological Literature Analysis, BioNLP 2006, pp. 73–80. Association for Computational Linguistics, Stroudsburg (2006).
  8. 8.
    Xu, S., Krauthammer, M.: A new pivoting and iterative text detection algorithm for biomedical images. J. Biomed. Inf. 43(6), 924–931 (2010). CrossRefGoogle Scholar
  9. 9.
    Xu, S., McCusker, J., Krauthammer, M.: Yale Image Finder (YIF): a new search engine for retrieving biomedical images. Bioinformatics 24(17), 1968–1970 (2008). CrossRefGoogle Scholar
  10. 10.
    Yu, H.: Towards answering biological questions with experimental evidence: automatically identifying text that summarize image content in full-text articles. In: AMIA Annual Symposium Proceedings, AMIA Symposium, pp. 834–838 (2006)Google Scholar
  11. 11.
    Yu, H., Lee, M.: BioEx - a novel user-interface that accesses images from abstract sentences (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hochschule HannoverHannoverGermany
  2. 2.Technische InformationsbibliothekHannoverGermany

Personalised recommendations