Advertisement

Topic Lifecycle on Social Networks: Analyzing the Effects of Semantic Continuity and Social Communities

  • Kuntal Dey
  • Saroj Kaushik
  • Kritika Garg
  • Ritvik Shrivastava
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10772)

Abstract

Topic lifecycle analysis on Twitter, a branch of study that investigates Twitter topics from their birth through lifecycle to death, has gained immense mainstream research popularity. In the literature, topics are often treated as one of (a) hashtags (independent from other hashtags), (b) a burst of keywords in a short time span or (c) a latent concept space captured by advanced text analysis methodologies, such as Latent Dirichlet Allocation (LDA). The first two approaches are not capable of recognizing topics where different users use different hashtags to express the same concept (semantically related), while the third approach misses out the user’s explicit intent expressed via hashtags. In our work, we use a word embedding based approach to cluster different hashtags together, and the temporal concurrency of the hashtag usages, thus forming topics (a semantically and temporally related group of hashtags). We present a novel analysis of topic lifecycles with respect to communities. We characterize the participation of social communities in the topic clusters, and analyze the lifecycle of topic clusters with respect to such participation. We derive first-of-its-kind novel insights with respect to the complex evolution of topics over communities and time: temporal morphing of topics over hashtags within communities, how the hashtags die in some communities but morph into some other hashtags in some other communities (that, it is a community-level phenomenon), and how specific communities adopt to specific hashtags. Our work is fundamental in the space of topic lifecycle modeling and understanding in communities: it redefines our understanding of topic lifecycles and shows that the social boundaries of topic lifecycles are deeply ingrained with community behavior.

References

  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
  2. 2.
    Ardon, S., Bagchi, A., Mahanti, A., Ruhela, A., Seth, A., Tripathy, R.M., Triukose, S.: Spatio-temporal and events based analysis of topic popularity in twitter. In: CIKM, pp. 219–228. ACM (2013)Google Scholar
  3. 3.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: WWW, pp. 519–528. ACM (2012)Google Scholar
  4. 4.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)MATHGoogle Scholar
  5. 5.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)CrossRefGoogle Scholar
  6. 6.
    Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: Tenth International Workshop on Multimedia Data Mining, p. 4. ACM (2010)Google Scholar
  7. 7.
    Cataldi, M., Schifanella, C., Candan, K.S., Sapino, M.L., Di Caro, L.: CoSeNa: a context-based search and navigation system. In: Conference on Management of Emergent Digital EcoSystems, p. 33. ACM (2009)Google Scholar
  8. 8.
    Cunha, E., Magno, G., Comarela, G., Almeida, V., Gonçalves, M.A., Benevenuto, F.: Analyzing the dynamic evolution of hashtags on twitter: a language-based approach. In: Languages in Social Media (ACL) (2011)Google Scholar
  9. 9.
    Dey, K., Kaushik, S., Subramaniam, L.V.: Literature survey on interplay of topics, information diffusion and connections on social networks. arXiv preprint arXiv:1706.00921 (2017)
  10. 10.
    Ifrim, G., Shi, B., Brigadir, I.: Event detection in twitter using aggressive filtering and hierarchical tweet clustering. In: SNOW-DC@ WWW, pp. 33–40 (2014)Google Scholar
  11. 11.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: WWW, pp. 591–600. ACM (2010)Google Scholar
  12. 12.
    Lau, J.H., Collier, N., Baldwin, T.: On-line trend analysis with topic models:\(\backslash \)# twitter trends detection topic model online. In: COLING, pp. 1519–1534 (2012)Google Scholar
  13. 13.
    Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: SIGMOD, pp. 1155–1158. ACM (2010)Google Scholar
  14. 14.
    Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: SIGKDD, pp. 33–41. ACM (2012)Google Scholar
  15. 15.
    Naaman, M., Becker, H., Gravano, L.: Hip and trendy: characterizing emerging trends on twitter. J. Am. Soc. Inform. Sci. Technol. 62(5), 902–918 (2011)CrossRefGoogle Scholar
  16. 16.
    Nagar, S., Narang, K., Mehta, S., Subramaniam, L.V., Dey, K.: Topical discussions on unstructured microblogs: analysis from a geographical perspective. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol. 8181, pp. 160–173. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41154-0_12 CrossRefGoogle Scholar
  17. 17.
    Narang, K., Nagar, S., Mehta, S., Subramaniam, L.V., Dey, K.: Discovery and analysis of evolving topical social discussions on unstructured microblogs. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 545–556. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36973-5_46 CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  19. 19.
    Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. EMNLP 14, 1532–1543 (2014)Google Scholar
  20. 20.
    Stilo, G., Velardi, P.: Hashtag sense clustering based on temporal similarity. Comput. Linguist. 43, 181–200 (2017)CrossRefGoogle Scholar
  21. 21.
    Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: WSDM, pp. 177–186. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IBM ResearchNew DelhiIndia
  2. 2.IIT, DelhiNew DelhiIndia
  3. 3.Ch. Brahm Prakash GECNew DelhiIndia
  4. 4.NSITNew DelhiIndia

Personalised recommendations