Skip to main content

Collaborative Virtual Laboratory Environments with Hardware in the Loop

  • Chapter
  • First Online:
Cyber-Physical Laboratories in Engineering and Science Education

Abstract

Over the last decade, the research community has expanded substantial efforts aiming at designing, agreeing on, and rolling out technical standards and powerful universal development tools that allow the rapid and cost-effective integration of specific experimental devices into standardized remote laboratory platforms. In this chapter, a virtual laboratory system with experimental hardware in the loop is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, N. M., & Cardoso, J. R. (1999). A virtual lab for electric motors and drives. IEEE Transactions on Magnetics, 35(3), 1674–1677.

    Article  Google Scholar 

  • Aburdene, M. F., Mastascusa, E. J., & Massengale, R. (1991). A proposal for a remotely shared control systems laboratory. In Proceeding of frontiers in education conference, West Lafayette, IN, September 21–24.

    Google Scholar 

  • Adam, J. A. (1993). Virtual reality is for real. IEEE Spectrum, 30(10), 22–29.

    Article  Google Scholar 

  • Adamo-Villani, N., Richardson, J., Carpenter, E., & Moore, G. (2006). A photorealistic 3D virtual laboratory for undergraduate instruction in microcontroller technology. In Proceeding of ACM SIGGRAPH 2006 Educators program, Boston, MA, US, July 30–August 3.

    Google Scholar 

  • Alexiou, A., Bouras, C., Giannaka, E., Kapoulas, V., Nani, M., & Tsiatsos, T. (2004). Using VR technology to support e-learning: The 3D virtual radiopharmacy laboratory. In Proceedings of the 24th international conference on distributed computing systems workshops, Tokyo, Japan, March 23–26.

    Google Scholar 

  • Alexiou, A., Bouras, C., & Giannaka, E. (2005). Virtual laboratories in education. In J. P. Courtiat, C. Davarakis, & T. Villemur (Eds.), Technology enhanced learning. IFIP International Federation for Information Processing (Vol. 171). Boston: Springer.

    Google Scholar 

  • Amazon Lumberyard. (2017). AAA game engine integrated with AWS. Retrieved from https://aws.amazon.com/lumberyard/

  • Andujar, J. M., Mejías, A., & Marquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: An augmented remote laboratory. IEEE Transactions on Education, 54(3), 492–500.

    Article  Google Scholar 

  • Arango, F., Altuger, G., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2008). Piloting a game-based virtual learning environment. Computers in Education Journal, 18(4), 82–91.

    Google Scholar 

  • Aron, M., Simon, G., & Berger, M. O. (2007). Use of inertial sensors to support video tracking. Computer, 18, 57–68.

    Google Scholar 

  • Arpaia, P., Baccigalupi, A., Cennamo, F., & Daponte, P. (1997). A remote measurement laboratory for educational experiments. Measurement, 21(4), 157–169.

    Article  Google Scholar 

  • Autodesk. (2017a). Make it with Maya computer animation software. Retrieved from http://www.autodesk.com/products/maya/overview

  • Autodesk. (2017b). 3D modeling, animation, and rendering software. Retrieved from http://www.autodesk.com/products/3ds-max/overview

  • Autodesk. (2017c). 3DS Max2104. Retrieved from http://docs.autodesk.com/3DSMAX/16/ENU/3ds-Max-Tutorials/index.html

  • Avradinis, N., Vosinakis, S., & Panayiotopoulos, T. (2000). Using virtual reality techniques for the simulation of physics experiments. In Proceeding of 4th systemics, cybernetics and informatics international conference, Orlando, Florida, US.

    Google Scholar 

  • Ayache, N. (1995). Medical computer vision, virtual reality and robotics. Image and Vision Computing, 13(4), 295–313.

    Article  Google Scholar 

  • Azim, A., & Aycard, O. (2012). Detection, classification and tracking of moving objects in a 3D environment. In Proceeding of the IEEE symposium on intelligent vehicles, Alcal de Henares,

    Google Scholar 

  • Aziz, E.-S., Esche, S. K., & Chassapis, C. (2006a). An architecture for virtual laboratory experimentation. In Proceedings of the 2006 ASEE annual conference and exposition, Chicago, Illinois, USA, June 18–21.

    Google Scholar 

  • Aziz, E.-S., Esche, S. K., & Chassapis, C. (2006b). A scalable platform for remote and virtual laboratories. World Transactions on Engineering and Technology Education, 5(3), 445–448.

    Google Scholar 

  • Aziz, E., Corter, J., Chang, Y., Esche, S., & Chassapis, C. (2012). Evaluation of the learning effectiveness of game-based and hands-on gear train laboratories. In Proceeding of frontiers in education conference (FIE), Seattle, WA, US, October 3–6.

    Google Scholar 

  • Aziz, E. S., Chang, Y., Esche, S. K., & Chassapis, C. (2014). A multi-user virtual laboratory environment virtual laboratory environment for gear train design. Computer Applications in Engineering Education, 22(4), 788–802.

    Article  Google Scholar 

  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47.

    Article  Google Scholar 

  • Baba, S. A., Hussain, H., & Embi, Z. C. (2007). An overview of parameters of game engine. IEEE Multidisciplinary Engineering Education Magazine, 2(3), 10–12.

    Google Scholar 

  • Balamuralithara, B., & Woods, P. C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108–118.

    Article  Google Scholar 

  • Barfield, W. (Ed.). (2015). Fundamentals of wearable computers and augmented reality. London: CRC Press.

    Google Scholar 

  • Bohus, C., Aktan, B., Shor, M. H., & Crowl, L. A. (1995). Running control engineering experiments over the Internet. Oregon State University, Department of Computer Science, Technical Report 95-60-07.

    Google Scholar 

  • Borghetti, M., Sardini, E., & Serpelloni, M. (2013). Sensorized glove for measuring hand finger flexion for rehabilitation purposes. IEEE Transactions on Instrumentation and Measurement, 62(12), 3308–3314.

    Article  Google Scholar 

  • Bottentuit Junior, J. B., & Coutinho, C. P. (2007). Virtual laboratories and M-learning: learning with mobile devices. In Proceedings of the international multi-conference on society, cybernetics, and informatics, Orlando, Florida, US, July 12–15.

    Google Scholar 

  • Brey, P. (2014). Virtual reality and computer simulation. In ethics and emerging technologies (pp. 315–332). Basingstoke: Palgrave Macmillan.

    Book  Google Scholar 

  • Bullet Engine. (2017). Real-time physics simulation. Retrieved from http://bulletphysics.org/wordpress/

  • Burdea, G., & Coiffet, P. (2003). Virtual reality technology. US: Wiley.

    Google Scholar 

  • Casini, M., Prattichizzo, D., & Vicino, A. (2001). The automatic control telelab: a remote control engineering laboratory. In Proceedings of the 40th IEEE conference on decision and control, Orlando, Florida, US, December 4–7.

    Google Scholar 

  • Chang, C., Kodman, D., Esche, S. K., & Chassapis, C. (2006a). Immersive collaborative laboratory simulations using a game engine. In Proceedings of the 2006 ASEE annual conference and exposition, Chicago, Illinois, US, Jun 18–21.

    Google Scholar 

  • Chang, C., Arango, F., Kodman, D., Esche, S. K., & Chassapis, C. (2006b). Utilization of immersive collaborative student laboratory simulations developed using a game engine. In Proceedings of the ASME international mechanical engineering congress and exposition IMECE’06, Chicago, Illinois, US, November 5–10.

    Google Scholar 

  • Chang, C., Arango, F., Esche, S. K., & Chassapis, C. (2007). On the assembly of experimental setups in virtual laboratory environments. In Proceedings of the ASME international mechanical engineering congress and exposition IMECE’07, Seattle, Washington, US, November 10–16.

    Google Scholar 

  • Chang, Y., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2012). A game-based laboratory for gear design. Computers in Education Journal, 22(1), 21–31.

    Google Scholar 

  • Chang, Y., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2013). A multi-user virtual laboratory environment for gear train design. Computer Applications in Engineering Education, 22(4), 788–802.

    Google Scholar 

  • Chang, Y., Aziz, E.-S., Zhang, Z., Zhang, M., Esche, S. K., & Chassapis, C. (2014). A platform for mechanical assembly education using the Microsoft Kinect. In Proceedings of the ASME international mechanical engineering congress & exposition, Quebec, Canada, November 14–20.

    Google Scholar 

  • Chang, Y., Aziz, E.-S., Zhang, Z., Zhang, M., & Esche, S. K. (2016a). Evaluation of a video game adaptation for mechanical engineering educational laboratories. In Proceedings of 46th ASEE/IEEE frontiers in education conference, Erie, US.

    Google Scholar 

  • Chang, Y., Aziz, E.-S., Zhang, Z., Zhang, M., Esche, S. K., & Chassapis, C. (2016b). Usability evaluation of a virtual educational laboratory platform. Computers in Education Journal, 7(1), 24–26.

    Google Scholar 

  • Chini, J. J., Madsen, A., Gire, E., Rebello, N. S., & Puntambekar, S. (2012). Exploration of factors that affect the comparative effectiveness of physical and virtual manipulatives in an undergraduate laboratory. Physical Review Special Topics – Physics Education Research, 8(1), 010113-1- 010113-12.

    Article  Google Scholar 

  • Classic Games. (2017). Meet with confidence. Retrieved from https://www.classicgames.me/super-mario-2d-land.html

  • Cockburn, A., & McKenzie, B. (2002). Evaluating the effectiveness of spatial memory in 2D and 3D physical and virtual environments. In Proceedings of the SIGCHI conference on human factors in computing systems, Minneapolis, Minnesota, US, April 20–25.

    Google Scholar 

  • Davidphillips. (2017). http://www.davidphillips.me/3d-art-and-animation.php. Accessed in Feb 2017.

  • De Meyer, A. (1991). Tech talk: How managers are stimulating global R&D communication. MIT Sloan Management Review, 32(3), 49.

    Google Scholar 

  • De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P., & De Clercq, W. (2014). On introducing an image-based 3D reconstruction method in archaeological excavation practice. Journal of Archaeological Science, 41, 251–262.

    Article  Google Scholar 

  • Deniz, D. Z., Bulancak, A., & Ozcan, G. (2003). A novel approach to remote laboratories. In Proceeding of 33rd annual frontiers in education conference, Westminster, Colorado, November 5–8.

    Google Scholar 

  • Dilwort, J. (2010). Realistic virtual reality and perception. Philosophical Psychology, 23, 23–42.

    Article  Google Scholar 

  • Dorozhkin, D. V., Vance, J. M., Rehn, G. D., & Lemessi, M. (2012). Coupling of interactive manufacturing operations simulation and immersive virtual reality. Virtual Reality, 16(1), 15–23.

    Article  Google Scholar 

  • Esche, S. K. (2005). On the integration of remote experimentation into undergraduate laboratories – pedagogical approach. International Journal of Instructional Media, 32(4), 397–407.

    Google Scholar 

  • Esche, S. K., & Chassapis, C. (1998). An Internet-based remote-access approach to undergraduate laboratory education. In Proceedings of the fall regional conference of the middle atlantic section of ASEE, Washington, DC, US, November 6–7.

    Google Scholar 

  • Familia, R. (2005). A virtual laboratory for cooperative learning of robotics and mechatronics. In Proceedings of the 6th international conference on information technology based higher education and training, Juan Dolio, Dominican Republic, July 7–9.

    Google Scholar 

  • Faulkner, G., & Krauss, M. (1996). Guidelines for establishing a virtual reality lab [medical applications]. IEEE Engineering in Medicine and Biology Magazine, 15(2), 86–93.

    Article  Google Scholar 

  • Feldman, A., Hybinette, M., & Balch, T. (2012). The multi-iterative closest point tracker: An online algorithm for tracking multiple interacting targets. Journal of Field Robotics, 29(2), 258–276.

    Article  Google Scholar 

  • Fiz, I., & Orengo, H. A. (2007). The application of 3D reconstruction techniques in the analysis of ancient Tarraco’s urban topography. In Proceedings of 35th international conference on computer applications and quantitative methods in archaeology, Berlin, Germany, April 2–6.

    Google Scholar 

  • Freund, E., & Roßmann, J. (2003). Distributed virtual reality: System concepts for cooperative training and commanding in virtual worlds. Journal of Systemics, Cybernetics and Informatics, 1(1), 47–54.

    Google Scholar 

  • Furness, T. A., & Kocian, D. F. (1986). Putting humans into virtual space. In Proceedings of the 16th conference on aerospace simulation, San Diego, California, US.

    Google Scholar 

  • Gaggioli, A., & Breinin, R. (2001). In G. Riva & F. Davide (Eds.), Communications through virtual technology, identity community and technology in the Internet age. Amsterdam: IOS Press.

    Google Scholar 

  • Gertz, M. W., Stewart, D. B., & Khosla, P. K. (1994). A human machine interface for distributed virtual laboratories. IEEE Robotics & Automation Magazine, 1(4), 5–13.

    Article  Google Scholar 

  • Griffith, R., Chiprout, E., Zhang, Q. J., & Nakhla, M. (1992). A CAD framework for simulation and optimization of high-speed VLSI interconnections. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39(11), 893–906.

    Article  Google Scholar 

  • Hahn, H. H., & Spong, M. W. (2000). Remote laboratories for control education. In Proceedings of the 39th IEEE conference on decision and control, Sydney, NSW, Australia; December 12–15.

    Google Scholar 

  • Harasim, L., Calvert, T., & Groeneboer, C. (1996). Virtual-Uâ„¢: A web-based environment customized to support collaborative learning and knowledge building in post secondary courses. In Proceedings of the 1996 international conference on learning sciences, Evanston, IL, US.

    Google Scholar 

  • Havok engine. (2017). Retrieved from http://www.havok.com/

  • Held, D., Levinson, J., Thrun, S., & Savarese, S. (2016). Robust real-time tracking combining 3D shape, color, and motion. The International Journal of Robotics Research, 35(1–3), 30–49.

    Article  Google Scholar 

  • Henty, D. S. (2000). Performance of hybrid message-passing and shared-memory parallelism for discrete element modeling. In Proceedings of the 2000 ACM/IEEE conference on supercomputing, Dallas, Texas, US, November 5–10.

    Google Scholar 

  • Hibbard, L. S., Grothe, R. A., Arnicar-Sulze, T. L., Dovey-Hartman, B. J., & Page, R. B. (1993). Computed three-dimensional reconstruction of median eminence capillary modules. Journal of Microscopy, 171, 39–56.

    Article  Google Scholar 

  • Hirose, M. (1997). Image-based virtual world generation. IEEE Multi Media, 4(1), 27–33.

    Article  Google Scholar 

  • Howard, B. M., & Vance, J. M. (2007). Desktop haptic virtual assembly using physically based modelling. Virtual Reality, 11(4), 207–215.

    Article  Google Scholar 

  • Hughes, J. F., Van Dam, A., Foley, J. D., & Feiner, S. K. (2014). Computer graphics: Principles and practice. US: Pearson Education.

    Google Scholar 

  • Hummel, J., Wolff, R., Stein, T., Gerndt, A., & Kuhlen, T. (2012). An evaluation of open source physics engines for use in virtual reality assembly simulations. In Proceeding of international symposium on visual computing, Rethymnon, Crete, Greece, July 16–18.

    Chapter  Google Scholar 

  • Jacobson, J., & Lewis, M. (2005). Game engine virtual reality with CaveUT. Computer, 38(4), 79–82.

    Article  Google Scholar 

  • Jara, C. A., Candelas, F. A., Puente, S. T., & Torres, F. (2011). Hands-on experiences of undergraduate students in automatics and robotics using a virtual and remote laboratory. Computers & Education, 57(4), 2451–2461.

    Article  Google Scholar 

  • Karim, M. A. (Ed.). (1992). Electro-optical displays. Boca Raton: CRC Press.

    Google Scholar 

  • Kfir, R. E. (2001). Virtual laboratories in education. In Proceedings of the 1st international conference on computer graphics, virtual reality and visualisation. Cape Town, South Africa, November 05–07.

    Google Scholar 

  • Kocian, D. F. (1997, May 17–18). A visually-coupled airborne systems simulator (VCASS) – An approach to visual simulation. In Proceeding of the IMAGE conference sponsored by air force human resources laboratory. Phoenix: Williams AFB.

    Google Scholar 

  • Kozak, I., Banerjee, P., Luo, J., & Luciano, C. (2014). Virtual reality simulator for vitreoretinal surgery using integrated OCT data. Clinical Ophthalmology, 2014(8), 669–672.

    Article  Google Scholar 

  • Leleve, A., Benmohamed, H., Prevot, P., & Meyer, C. (2003). Remote laboratory-towards an integrated training system. In Proceeding of 4th international conference on information technology based higher education and training, Marrakech, Morocco, July 7–9.

    Google Scholar 

  • Li, J. R., Khoo, L. P., & Tor, S. B. (2003). Desktop virtual reality for maintenance training: An object oriented prototype system (V-REALISM). Computers in Industry, 52(2), 109–125.

    Article  Google Scholar 

  • Lin, F., Ye, L., Duffy, V. G., & Su, C. J. (2002). Developing virtual environments for industrial training. Information Sciences, 140(1), 153–170.

    Article  Google Scholar 

  • Livingston, M. A., Rosenblum, L. J., Julier, S. J., Brown, D., Baillot, Y., Swan, I. I., Gabbard, J. L., & Hix, D. (2002). An augmented reality system for military operations in urban terrain. In Proceedings of interservice/industry training, simulation & education conference, Orlando, Florida, December 2–5.

    Google Scholar 

  • Lu, G., Shark, L. K., Hall, G., & Zeshan, U. (2012). Immersive manipulation of virtual objects through glove-based hand gesture interaction. Virtual Reality, 16(3), 243–252.

    Article  Google Scholar 

  • Luciano, C., Banerjee, P., Florea, L., & Dawe, G. (2005). Design of the ImmersiveTouchâ„¢: A high-performance haptic augmented virtual reality system. In Proceedings of the 11th international conference on human-computer interaction, Las Vegas, Nevada, USA, Jul 22–27.

    Google Scholar 

  • Luciano, C., Banerjee, P., & DeFanti, T. (2009). Haptics-based virtual reality periodontal training simulator. Virtual Reality, 13(2), 69–85.

    Article  Google Scholar 

  • Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3–32.

    Article  Google Scholar 

  • Lustigova, Z., & Lustig, F. (2009). Remote and open laboratory in science education – technological, educational and psychological issues. In Proceeding of the ITI 2009 31st international conference on information technology interfaces, Cavtat/Dubrovnik, Croatia, June 22–25.

    Google Scholar 

  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 7–32.

    Article  Google Scholar 

  • Macedonia, M. R., Brutzman, D. P., Zyda, M. J., Pratt, D. R., Barham, P. T., Falby, J., & Locke, J. (1995). NPSNET: a multi-player 3D virtual environment over the Internet. In Proceedings of the symposium on interactive 3D graphics, Monterey, CA, US, April 9–12.

    Google Scholar 

  • Mahmoud, Q. (2004). Middleware for communications. New York: Wiley.

    Book  Google Scholar 

  • Mazzucco, M., Morgan, G., Panzieri, F., & Sharp, C. (2009). Engineering distributed shared memory middleware for java. In On the move to meaningful internet systems. Berlin: Springer.

    Google Scholar 

  • McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2), 91–108.

    Article  Google Scholar 

  • McLellan, H. (2001). Virtual realities. McLellan Wyatt Digital.

    Google Scholar 

  • Merians, A. S., Jack, D., Boian, R., Tremaine, M., Burdea, G. C., Adamovich, S. V., Recce, M., & Poizner, H. (2002). Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy, 82(9), 898–915.

    Google Scholar 

  • Moore’s Law. (2017). Retrieved from http://www.mooreslaw.org/

  • Moosmann, F., & Stiller, C. (2013). Joint self-localization and tracking of generic objects in 3D range data. In Proceeding of the IEEE international conference on robotics and automation, Karlsruhe, Germany, May 6–10.

    Google Scholar 

  • Nah, F. F. H., Eschenbrenner, B., & DeWester, D. (2011). Enhancing brand equity through flow and telepresence: A comparison of 2D and 3D virtual worlds. MIS Quarterly, 35(3), 731–747.

    Article  Google Scholar 

  • Nandwana, T. P. (2016). Virtual reality and augmented reality: The next best thing to being there. Retrieved from http://www.carriermanagement.com/features/2016/05/25/154815.htm

  • National Instruments. (2017). What is data acquisition? Retrieved from http://www.ni.com/data-acquisition/what-is/

  • Nelson, B., Ketelhut, D. J., Clarke-Midura, J., Bowman, C., & Dede, C. (2005). Design-based research strategies for developing a scientific inquiry curriculum in a multi-user virtual environment. Educational Technology, 45(1), 21–27.

    Google Scholar 

  • Noor, A. K., & Wasfy, T. M. (2001). Simulation of physical experiments in immersive virtual environments. Engineering Computations, 18(3/4), 515–538.

    Article  Google Scholar 

  • NVidia. (2017). PhysX games. Retrieved from http://www.geforce.com/hardware/technology/physx

  • Obeysekare, U., Grinstein, F. F., & Patnaik, G. (1997). The visual interactive desktop laboratory. IEEE Computational Science and Engineering, 4(1), 63–71.

    Article  Google Scholar 

  • ODE. (2017). Open dynamics engine. Retrieved from http://www.ode.org/

  • Olympiou, G., & Zacharia, Z. C. (2012). Blending physical and virtual manipulatives: An effort to improve. Science Education, 96(1), 21–47.

    Google Scholar 

  • Parallel Computing. (2017). Introduction to parallel computing. Retrieved from https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

  • Patnode, J. (2012). Character modeling with Maya and ZBrush: Professional polygonal modeling techniques. Oxford: CRC Press.

    Book  Google Scholar 

  • Petrovskaya, A., & Thrun, S. (2008). Model based vehicle tracking for autonomous driving in urban environments. In Proceedings of robotics: Science and systems IV, Zurich, Switzerland, June 25–28.

    Google Scholar 

  • Pukhov, A. (1999). Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). Journal of Plasma Physics, 61(3), 425–433.

    Article  Google Scholar 

  • Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 33–147.

    Article  Google Scholar 

  • Ramasundaram, V., Grunwald, S., Mangeot, A., Comerford, N. B., & Bliss, C. M. (2005). Development of an environmental virtual field laboratory. Computers & Education, 45(1), 21–34.

    Article  Google Scholar 

  • Rohrig, C., & Jochheim, A. (1999). The virtual lab for controlling real experiments via internet. In Proceedings of the 1999 IEEE international symposium on computer aided control system design, Hawaii, USA, August 22–27.

    Google Scholar 

  • Rolland, J. P., Davis, L., & Baillot, Y. (2001). A survey of tracking technology for virtual environments. Fundamentals of Wearable Computers and Augmented Reality, 1(1), 67–112.

    Google Scholar 

  • Ryde, J., & Hu, H. (2010). 3D mapping with multi-resolution occupied voxel lists. Autonomous Robots, 28(2), 169–185.

    Article  Google Scholar 

  • Rzepa, H. S., & Tonge, A. P. (1998). VChemLab: A virtual chemistry laboratory. The storage, retrieval, and display of chemical information using standard internet tools. Journal of Chemical Information and Computer Sciences, 38(6), 1048–1053.

    Article  Google Scholar 

  • Salzmann, M., Urtasun, R., & Fua, P. (2008). Local deformation models for monocular 3D shape recovery. In Proceeding of the IEEE conference on computer vision and pattern recognition, Anchorage, AK, US, June 23–28.

    Google Scholar 

  • Sarris, N., & Strintzis, M. G. (Eds.). (2005). 3D modeling and animation: Synthesis and analysis techniques for the human body. USA: IGI Global.

    Google Scholar 

  • Sears, A. L., & Watkins, S. E. (1996). A multimedia manual on the World Wide Web for telecommunications equipment. IEEE Transactions on Education, 39(3), 342–348.

    Article  Google Scholar 

  • Sharma, S., Azeemuddin, S., & Anwar, M. (2011). A self learning VLSI lab along with web-based platform to design schematics and layouts. In Proceeding of IEEE international conference on technology for education, Chennai, India, July 14–16.

    Google Scholar 

  • SIS. (2017). The scholars’ international school. Retrieved from http://www.scholarsqatar.com/virtual-lab/

  • Smedley, T. M., & Higgins, K. (2005). Virtual technology: Bringing the world into the special education classroom. Intervention in School and Clinic, 41(2), 114–119.

    Article  Google Scholar 

  • Song, P., Yu, H., & Winkler, S. (2008). Vision-based 3D finger interactions for mixed reality games with physics simulation. In Proceedings of the 7th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry, Fusionopolis, Singapore, December 8–9.

    Google Scholar 

  • Steam. (2017). Steam support. Retrieved from https://support.steampowered.com/kb_article.php?ref=7285-QDGB-1502

  • Taylor, K., & Trevelyan, J. (1995). Australia’s telerobot on the web. In Proceedings of 26th international symposium on industrial robots, Singapore, October 4–6.

    Google Scholar 

  • Thorn, A. (2010). Game engine design and implementation. Chapter 1. Sudbury: Jones & Bartlett Publishers.

    Google Scholar 

  • Thornton, C., & Boulay, B. (1998). Artificial intelligence: Strategies, applications, and models through search (2nd ed.). London: Routledge.

    Google Scholar 

  • Tokamak. (2017). Tokamak physics. Retrieved from http://www.tokamakphysics.com/

  • Toledo. (2017). College of business and innovation. Retrieved from https://www.utoledo.edu/business/InfoTech/ITLabs.html

  • Trenholme, D., & Smith, S. P. (2008). Computer game engines for developing first-person virtual environments. Virtual Reality, 12(3), 181–187.

    Article  Google Scholar 

  • True Axis. (2017). Authentic skateboarding game. Retrieved from http://www.trueaxis.com/

  • Valera, A., Díez, J. L., Vallés, M., & Albertos, P. (2005). Virtual and remote control laboratory development. IEEE Control Systems, 25(1), 35–39.

    Article  Google Scholar 

  • Valve Developer Community. (2017). SKD installation. Retrieved from https://developer.valvesoftware.com/wiki/SDK_Installation

  • Varol, A., Shaji, A., Salzmann, M., & Fua, P. (2012). Monocular 3D reconstruction of locally textured surfaces. IEEE Transactions of Pattern Analysis and Machine Intelligence, 34(6), 1118–1130.

    Article  Google Scholar 

  • Verma, S. P., & Lin, K. S. (1989). System for automatically reading utility meters from a remote location. U.S. Patent 4,833,618.

    Google Scholar 

  • Verschaffel, L., de Corte, E., de Jong, T., & Elen, J. (Eds.). (2010). Use of representations in reasoning and problem solving: Analysis and improvement. London: Routledge.

    Google Scholar 

  • Vosniakos, G. C., Ziaaie-Moayyed, M., & Mamalis, A. G. (1997). Design of a system for computer-aided engineering of manufacturing facilities. Computer Integrated Manufacturing Systems, 10(1), 1–7.

    Article  Google Scholar 

  • Werghi, N., Fisher, R., Robertson, C., & Ashbrook, A. (1999). Object reconstruction by incorporating geometric constraints in reverse engineering. Computer-Aided Design, 31(6), 363–399.

    Article  Google Scholar 

  • Wikipedia. (2017). Dota 2. Retrieved from https://en.wikipedia.org/wiki/Dota_2

  • Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240.

    Article  Google Scholar 

  • Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 021–1035.

    Article  Google Scholar 

  • Zhang, Z., Zhang, M., Tumkor, S., Chang, Y., Esche, S. K., & Chassapis, C. (2013a). Integration of physical devices into game-based virtual reality. International Journal of Online Engineering, 9(5), 25–38.

    Article  Google Scholar 

  • Zhang, Z., Zhang, M., Chang, Y., Aziz, E.-S., Esche, S. K., & Chassapis, C. (2013b). Real-time 3D model reconstruction and interaction using Kinect for a game-based virtual laboratory. In Proceedings of ASME international mechanical engineering congress & exposition, San Diego, CA, US, November 15–21.

    Google Scholar 

  • Zhang, Z., Zhang, M., Chang, Y., Esche, S. K., & Chassapis, C. (2014). An efficient method for creating virtual spaces for virtual reality. In Proceedings of ASME 2014 international mechanical engineering congress and exposition, November 14–20, 2014, Montreal, QC, Canada.

    Google Scholar 

  • Zhang, M., Zhang, Z., Chang, Y., Esche, S. K., & Chassapis, C. (2015a). Kinect-based universal range sensor and its application in educational laboratories. International Journal of Online Engineering, 11(2), 26–35.

    Article  Google Scholar 

  • Zhang, Z., Zhang, M., Chang, Y., Esche, S. K., & Chassapis, C. (2015b). A smart method for developing game-based virtual laboratories. In Proceedings of ASME international mechanical engineering congress and exposition, Houston, Texas, US, November 13–19.

    Google Scholar 

  • Zhang, M., Zhang, Z., Chang, Y., & Esche, S. K. (2015c). Simultaneous tracking and reconstruction of objects and its application in educational robotics laboratories. In Proceedings of the ASEE annual conference & exposition, Seattle, Washington, US, June 14–17.

    Google Scholar 

  • Zhang, Z., Zhang, M., Chang, Y., Esche, S. K., & Chassapis, C. (2016). A virtual laboratory system with biometric authentication and remote proctoring based on facial recognition. In Proceedings of the ASEE annual conference & exposition, New Orleans, LA, US, June 26–29.

    Google Scholar 

  • Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z., Zhang, M., Chang, Y., Aziz, ES., Esche, S.K., Chassapis, C. (2018). Collaborative Virtual Laboratory Environments with Hardware in the Loop. In: Auer, M., Azad, A., Edwards, A., de Jong, T. (eds) Cyber-Physical Laboratories in Engineering and Science Education. Springer, Cham. https://doi.org/10.1007/978-3-319-76935-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76935-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76934-9

  • Online ISBN: 978-3-319-76935-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics