Skip to main content

Life-Science Experiments Online: Technological Frameworks and Educational Use Cases

  • Chapter
  • First Online:

Abstract

We review remote (or “cloud”) lab technologies for life-science experimentation. Compared to other remote labs such as for physics, a particular challenge arises from the variability and stability of biological materials. We describe and compare four biology cloud labs that demonstrate different user interaction modes, i.e., real-time and turn-based interactive, programmed, and augmented batch, respectively, and furthermore regard their underlying hard and software architecture, biological content (“bio-ware”) (i.e., microswimmer phototaxis, slime mold chemotaxis, bacterial growth under antibiotics, RNA folding), and various other features such as the time required for one experiment or scalability to large user numbers. While we generally focus on educational use cases, research applications are included as well. General design rules for biology cloud experimentation labs are derived; open questions regarding future technology and opportunities for wide deployment are discussed. We hope that this review enables stakeholders from the life sciences, engineering, and education to join this relevant and exciting field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamatzky, A. (2010). Routing Physarum with repellents. The European Physical Journal E, Soft Matter, 31(4), 403–410.

    Article  Google Scholar 

  • Alim, K., Amselem, G., Peaudecerf, F., Brenner, M. P., & Pringle, A. (2013). Random network peristalsis in Physarum polycephalum organizes fluid flows across an individual. Proceedings of the National Academy of Sciences, 110(30), 13306–13311.

    Article  Google Scholar 

  • Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H., & Quake, S. R. (2005). Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science, 309(57310), 137–140.

    Article  Google Scholar 

  • Barsanti, L., Evangelista, V., Passarelli, V., Frassanito, A. M., & Gualtieri, P. (2012). Fundamental questions and concepts about photoreception and the case of Euglena gracilis. Integrative Biology, 4(1), 22–36.

    Article  Google Scholar 

  • Bida, J. P., & Das, R. (2012). Squaring theory with practice in RNA design. Current Opinion in Structural Biology, 22(4), 457–466.

    Article  Google Scholar 

  • Blikstein, P., Fuhrmann, T., & Greene, D. (2012). Bifocal modeling: Mixing real and virtual labs for advanced science learning. In Proceedings of the 11th International Conference on Interaction Design and Children, Germany, June 12–15.

    Google Scholar 

  • Bonde, M. T., Makransky, G., Wandall, J., Larsen, M. V., Morsing, M., Jarmer, H., & Sommer, M. O. A. (2014). Improving biotech education through gamified laboratory simulations. Nature Biotechnology, 32(7), 694–697.

    Article  Google Scholar 

  • Bybee, R. W. (2013). The next generation science standards and the life sciences. Science & Children, 50(6), 7–14.

    Google Scholar 

  • Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175–218.

    Article  Google Scholar 

  • Cira, N. J., Chung, A. M., Denisin, A. K., Rensi, S., Sanchez, G. N., Quake, S. R., & Riedel-Kruse, I. H. (2015). A biotic game design project for integrated life science and engineering education. PLoS Biology, 13(3), e1002110–e1002118.

    Article  Google Scholar 

  • Cira, N., Ma, E., & Riedel-Kruse, I. H. (2017). Network dynamics of slime molds, in preparation.

    Google Scholar 

  • Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popović, Z., & Players, F. (2010). Predicting protein structures with a multiplayer online game. Nature, 466(7307), 756–760.

    Article  Google Scholar 

  • Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B., & Rogers, C. B. (2014). LEGO-based robotics in higher education: 15 years of student creativity. International Journal of Advanced Robotic Systems, 11(27), 1–15.

    Google Scholar 

  • de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308.

    Article  Google Scholar 

  • Eiben, C. B., Siegel, J. B., Bale, J. B., Cooper, S., Khatib, F., Shen, B. W., Players, F., Stoddard, B. L., Popović, Z., & Baker, D. (2012). Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nature Biotechnology, 30(2), 190–192.

    Article  Google Scholar 

  • Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297(5584), 1183–1186.

    Article  Google Scholar 

  • Etsion, Y., & Tsafrir, D. (2005). A short survey of commercial cluster batch schedulers. The Hebrew University of Jerusalem, 13, 44221.

    Google Scholar 

  • Fox, A. (2011). Cloud computing – What’s in it for me as a scientist? Science, 331(6016), 406–407.

    Article  Google Scholar 

  • Gerber, L. C., Kim, H., & Riedel-Kruse, I. H. (2016). Interactive biotechnology: Design rules for integrating biological matter into digital games. In Proceedings of the First International Joint Conference of DiGRA and FDG. Dundee, Scotland, UK.

    Google Scholar 

  • Gerber, L. C., Calasanz-Kaiser, A., Hyman, L., Voitiuk, K., Patil, U., & Riedel-Kruse, I. H. (2017). Liquid-handling Lego robots and experiments for STEM education and research. PLoS Biology, 15(3), e2001413–e2001419.

    Article  Google Scholar 

  • Goldstein, R. E. (2015). Green algae as model organisms for biological fluid dynamics. Annual Review of Fluid Mechanics, 47(1), 343–375.

    Article  Google Scholar 

  • Harvey, H., Havard, M., Magnus, D., Cho, M. K., & Riedel-Kruse, I. H. (2014). Innocent fun or ‘Microslavery’? Hastings Center Report, 44(6), 38–46.

    Article  Google Scholar 

  • Harward, V. J., del Alamo, J. A., Lerman, S. R., Bailey, P. H., Carpenter, J., DeLong, K., Felknor, C., Hardison, J., Harrison, B., Jabbour, I., Long, P. D., Mao, T., Naamani, L., Northridge, J., Schulz, M., Talavera, Varadharajan, C., Wang, S., Yehia, K., Zbib, R., & Zych, D. (2008). The iLab shared architecture: A web services infrastructure to build communities of internet accessible laboratories. Proceedings of the IEEE, 96(6), 931–950.

    Article  Google Scholar 

  • Hayden, E. C. (2004). The automated lab. Nature, 516(7529), 131–132.

    Article  Google Scholar 

  • Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., & Dormido, S. (2016). Virtual and remote labs in education: A bibliometric analysis. Computers & Education, 98(C), 14–38.

    Article  Google Scholar 

  • Hossain, Z., & Riedel-Kruse, I. H. (2017). Concept and characterization of biotic processing units (BPUs), in preparation.

    Google Scholar 

  • Hossain, Z., Blikstein, P., Riedel-Kruse, I. H., Jin, X., Bumbacher, E., Chung, A. M., Koo, S., Shapiro, J. D., Truong, C. Y., Choi, S., & Orloff, N. D. (2015). Interactive cloud experimentation for biology. In Presented at the the 33rd Annual ACM Conference (pp. 3681–3690). New York

    Google Scholar 

  • Hossain, Z., Bumbacher, E., Chung, A. M., Kim, H., Litton, C., Pradhan, S., Walter, A., Jona, K., Blikstein, P., & Riedel-Kruse, I. H. (2016). A real-time interactive, scalable biology cloud experimentation platform. Nature Biotechnology, 34(12), 1293–1298.

    Article  Google Scholar 

  • Hossain, Z., Bumbacher, E., Blikstein, P., & Riedel-Kruse, I. H. (2017). Authentic science inquiry learning at scale enabled by an interactive biology cloud experimentation lab. In Proceedings of the first ACM conference on learning scale conference. ACM.

    Google Scholar 

  • Kim, H., Gerber, L. C., Chiu, D., Lee, S. A., Cira, N. J., Xia, S. Y., & Riedel-Kruse, I. H. (2016). LudusScope: Accessible interactive smartphone microscopy for life-science education. PLoS One, 11(10), e0162602–e0162616.

    Article  Google Scholar 

  • Klavins, E. (2017). The aquarium project. Retrieved from http://klavinslab.org/aquarium.html

  • Kong, F., Yuan, L., Zheng, Y. F., & Chen, W. (2012). Automatic liquid handling for life science: A critical review of the current state of the art. Journal Laboratory Automation, 17(3), 169–185.

    Article  Google Scholar 

  • Lam, A. T., Samuel-Gama, K. G., Griffin, J., Loeun, M., Gerber, L. C., Hossain, Z., Cira, N. J., Lee, S. A., & Riedel-Kruse, I. H. (2017). Device and programming abstractions for spatiotemporal control of active micro-particle swarms. Lab on a Chip, 15(10), 351.

    Google Scholar 

  • Lee, J., Kladwang, W., Lee, M., Cantu, D., Azizyan, M., Kim, H., Limpaecher, A., Yoon, S., Treuille, A., Das, R., & EteRNA Participants. (2014). RNA design rules from a massive open laboratory. Proceedings of the National Academy of Sciences, 111(6), 2122–2127.

    Article  Google Scholar 

  • Lee, S. A., Bumbacher, E., Chung, A. Cira, N. J., Walker, B., Park, J. Y., Starr, B., Blikstein, P., & Riedel-Kruse, I. H. (2015). Trap it!. Presented at the 33rd Annual ACM Conference (pp. 2593–2602). New York.

    Google Scholar 

  • Melin, J., & Quake, S. R. (2007). Microfluidic large-scale integration: The evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure, 36, 213–231.

    Article  Google Scholar 

  • National Academies Press. (2012). Committee on a Conceptual Framework for New K-12 Science Education Standards, Board on Science Education, National Research Council, A Framework for K-12 Science Education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

    Google Scholar 

  • Ozasa, K., Lee, J., Song, S., & Maeda, M. (2014). Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device. Plant and Cell Physiology, 55(10), 1704–1712.

    Article  Google Scholar 

  • Ozcan, A. (2014). Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab on a Chip, 14(17), 3187–3188.

    Article  Google Scholar 

  • Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14(C), 47–61.

    Article  Google Scholar 

  • Purcell, E. (1997). Life at low Reynolds number. American Journal of Physics, 45(3), 11.

    Google Scholar 

  • Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids. In Wearable computers, the IEEE international symposium on (pp. 1–6), March.

    Google Scholar 

  • Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60.

    Article  Google Scholar 

  • Riedel-Kruse, I. H. (2017). Incorporating a commercial biology cloud lab into online education. In Proceedings of the International Conference on Remote Engineering and Virtual Instrumentation. New York.

    Google Scholar 

  • Riedel-Kruse, I. H., Chung, A. M., Dura, B., Hamilton, A. L., & Lee, B. C. (2011). Design, engineering and utility of biotic games. Lab on a Chip, 11(1), 4–22.

    Article  Google Scholar 

  • Romensky, M., Scholz, D., & Lobaskin, V. (2015). Hysteretic dynamics of active particles in a periodic orienting field. Journal of the Royal Society Interface, 12(108), 20150015–20150015.

    Article  Google Scholar 

  • Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions Systems, Man, and Cybernetics Part C, 40(6), 601–618.

    Article  Google Scholar 

  • Sauter, M., Uttal, D. H., Rapp, D. N., Downing, M., & Jona, K. (2013). Getting real: The authenticity of remote labs and simulations for science learning. Distance Education, 34(1), 37–47.

    Article  Google Scholar 

  • Seetin, M. G., Kladwang, W., Bida, J. P., & Das, R. (2014). Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods in Molecular Biology, 1086(6), 95–117.

    Article  Google Scholar 

  • Sia, S. K., & Owens, M. P. (2015). Share and share alike. Nature Biotechnology, 33(12), 1224–1228.

    Article  Google Scholar 

  • Skilton, R. A., Bourne, R. A., Amara, Z., Horvath, R., Jin, J., Scully, M. J., Streng, E., Tang, S. L. Y., Summers, P. A., Wang, J., Pérez, E., Asfaw, N., Aydos, G. L. P., Dupont, J., Comak, G., George, M. W., & Poliakoff, M. (2015). Remote-controlled experiments with cloud chemistry. Nature Chemistry, 7(1), 1–5.

    Article  Google Scholar 

  • States, N. L. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

    Google Scholar 

  • Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K., Kobayashi, R., & Nakagaki, T. (2010). Rules for biologically inspired adaptive network design. Science, 327(5964), 439–442.

    Article  Google Scholar 

  • Transcriptics. (2015). Discovery biology on demand. Retrieved from https://www.transcriptic.com

  • Wellington, J. (2007). America’s lab report: Investigations in high school science. Science Education, 91(3), 514–515.

    Article  Google Scholar 

  • Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368–373.

    Article  Google Scholar 

  • Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PHYSICS: PhET: Simulations that enhance learning. Science, 322(5902), 682–683.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Stanford BioX IIP, Stanford VPOL, Stanford MediaX, and NSF Cyberlearning (NSF 1324753). We would like to thank from R. Das, B. Keep, and R. Waters. Note: This review article summarizes information from various sources; in case where this information was from our own lab’s previous publications we often edited from the original text, and while we cited those original sources, we did not put those text pieces in quotes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingmar H. Riedel-Kruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, Z., Riedel-Kruse, I.H. (2018). Life-Science Experiments Online: Technological Frameworks and Educational Use Cases. In: Auer, M., Azad, A., Edwards, A., de Jong, T. (eds) Cyber-Physical Laboratories in Engineering and Science Education. Springer, Cham. https://doi.org/10.1007/978-3-319-76935-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76935-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76934-9

  • Online ISBN: 978-3-319-76935-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics