Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 599 Accesses

Abstract

The meccano method was recently introduced to construct simultaneously tetrahedral meshes and volumetric parameterizations of solids. The method requires the information of the solid geometry that is defined by its surface, a meccano, i.e., an outline of the solid defined by connected polyhedral pieces, and a tolerance that fixes the desired approximation of the solid surface. The method builds an adaptive tetrahedral mesh of the solid (physical domain) as a deformation of an appropriate tetrahedral mesh of the meccano (parametric domain). The main stages of the procedure involve an admissible mapping between the meccano and the solid boundaries, the nested Kossaczký’s refinement, and our simultaneous untangling and smoothing algorithm. In this chapter, we focus on the application of the method to build tetrahedral meshes over complex terrain, that is interesting for simulation of environmental processes. A digital elevation map of the terrain, the height of the domain, and the required orography approximation are given as input data. In addition, the geometry of buildings or stacks can be considered. In these applications, we have considered a simple cuboid as meccano.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programing: theory and algorithms. Wiley, New York

    MATH  Google Scholar 

  2. Benítez D, Rodríguez E, Escobar JM, Montenegro R (2014) Performance evaluation of a parallel algorithm for simultaneous untangling and smoothing of tetrahedral meshes. In: Proceedings of the 22nd international meshing roundtable. Springer Science Business Media, pp 579–598. https://doi.org/10.1007/978-3-319-02335-9_32

    Chapter  Google Scholar 

  3. Carey GF (1997) Computational grids: generation adaptation and solution strategies. Taylor, Washington

    Google Scholar 

  4. Carey GF (2006) A perspective on adaptive modeling and meshing (AM&M). Comput Methods Appl Mech Eng 195(4–6):214–235. https://doi.org/10.1016/j.cma.2004.11.027. 1st ADMOS Conference 2003, Goteborg, SWEDEN, Sep, 2003

  5. Cascón JM, Montenegro R, Escobar JM, Rodríguez E, Montero G (2007) A new meccano technique for adaptive 3-d triangulations. In: Proceedings of the 16th international meshing roundtable. Springer, Berlin, Germany, pp 103–120. https://doi.org/10.1007/978-3-540-75103-8_6

  6. Cascón JM, Rodríguez E, Escobar JM, Montenegro R (2015) Comparison of the meccano method with standard mesh generation techniques. Eng Comput 31(1):161–174. https://doi.org/10.1007/s00366-013-0338-6

    Article  Google Scholar 

  7. Escobar JM, Montero G, Montenegro R, Rodríguez E (2006) An algebraic method for smoothing surface triangulations on a local parametric space. Int J Numer Meth Eng 66(4):740–760. https://doi.org/10.1002/nme.1584

    Article  MathSciNet  MATH  Google Scholar 

  8. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2003) Simultaneous untangling and smoothing of tetrahedral meshes. Comput Methods Appl Mech Eng 192(25):2775–2787. https://doi.org/10.1016/S0045-7825(03)00299-8

    Article  MATH  Google Scholar 

  9. Escobar JM, Rodríguez E, Montenegro R, Montero G, González-Yuste JM (2010) SUS code: simultaneous mesh untangling and smoothing code. http://www.dca.iusiani.ulpgc.es/SUScode

  10. Floater MS (1997) Parametrization and smooth approximation of surface triangulations. Comput Aided Geom Des 14(3):231–250. https://doi.org/10.1016/S0167-8396(96)00031-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27. https://doi.org/10.1016/S0167-8396(03)00002-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Frey PJ, George PL (2000) Mesh generation. Hermes Science Publishing, Oxford

    MATH  Google Scholar 

  13. George PL, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. Editions Hermes, Paris

    MATH  Google Scholar 

  14. González-Yuste JM, Montenegro R, Escobar JM, Montero G, Rodríguez E (2004) Local refinement of 3-d triangulations using object-oriented methods. Adv Eng Softw 35(10):693–702. https://doi.org/10.1016/j.advengsoft.2003.07.003. Engineering Computational Technology

    Article  Google Scholar 

  15. Knupp PM (2001) Algebraic mesh quality metrics. SIAM J Sci Comput 23(1):193–218. https://doi.org/10.1137/s1064827500371499

    Article  MathSciNet  MATH  Google Scholar 

  16. Kossaczký I (1994) A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math 55(3):275–288. https://doi.org/10.1016/0377-0427(94)90034-5

    Article  MathSciNet  MATH  Google Scholar 

  17. Löhner R, Baum JD (1992) Adaptive h-refinement on 3-D unstructured grids for transient problems. Int J Numer Meth Fluids 14:1407–1419. https://doi.org/10.1002/fld.1650141204

    Article  MATH  Google Scholar 

  18. Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2009) An automatic strategy for adaptive tetrahedral mesh generation. Appl Numer Math 59(9):2203–2217. https://doi.org/10.1016/j.apnum.2008.12.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Montenegro R, Cascón JM, Escobar JM, Rodríguez E, Montero G (2010) The meccano method for simultaneous volume parametrization and mesh generation of complex solids. IOP Conf Ser Mater Sci Eng 10(1):012–018. https://doi.org/10.1088/1757-899X/10/1/012018

    Article  Google Scholar 

  20. Montenegro R, Cascón JM, Rodríguez E, Escobar JM, Montero G (2010) The meccano method for automatic three-dimensional triangulation and volume parametrization of complex solids. In: Topping B, Adam J, Pallarés F, Bru R, Romero M (eds) Developments and applications in engineering computational technology, seventh edn., Chap. 2. Saxe-Coburg Publications, Stirlingshire, pp 19–48. https://doi.org/10.4203/csets.26.2

  21. Oliver A, Montero G, Montenegro R, Rodríguez E, Escobar JM, Pérez-Foguet A (2013) Adaptive finite element simulation of stack pollutant emissions over complex terrains. Energy 49:47–60. https://doi.org/10.1016/j.energy.2012.10.051

    Article  Google Scholar 

  22. Prieto D, Asensio MI, Ferragut L, Cascón JM, Morillo A (2017) A gis-based fire spread simulator integrating a simplified physical wildland fire model and a wind field model. Int J Geogr Inf Sci 31(11):2142–2163. https://doi.org/10.1080/13658816.2017.1334889

    Article  Google Scholar 

  23. Rivara M (1987) A grid generator bases on 4-triangles conforming mesh-refinement algorithms. Int J Numer Meth Eng 24(7):1343–1354. https://doi.org/10.1002/nme.1620240710

    Article  MATH  Google Scholar 

  24. Thompson JF, Soni B, Weatherill N (1999) Handbook of grid generation. CRC Press, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manuel Cascón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cascón , J.M., Escobar, J.M., Montenegro, R. (2018). Discretization of the Region of Interest. In: Perez, R. (eds) Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-76876-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76876-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76875-5

  • Online ISBN: 978-3-319-76876-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics