Skip to main content

System Dynamics Simulation to Explore the Impact of Low European Electricity Prices on Swiss Generation Capacity Investments

  • Chapter
  • First Online:
Energy Economy, Finance and Geostrategy

Abstract

European electricity markets are coping with low energy prices as a result of overinvestments in generation capacity, subsidies for renewables and the financial crisis of 2008. In this chapter we explore the implications of low electricity prices on the Swiss electricity market, which is facing the additional challenge of phasing out nuclear power plants and market liberalization. System Dynamics is utilized to model and simulate the long-term impacts on investments in new generation capacity, security of supply and future electricity prices. Simulation results indicate that the current low electricity prices are likely to persist for another decade. The most likely response to the low prices is an underinvestment in generation capacity, with the risk of scarcity pricing under low security of supply, as it coincides with the decommissioning of nuclear power plants. There is little evidence this will lead to boom-and-bust investment cycles. Finally, in the long-term we observe a shift towards renewable energy sources and natural gas fired power plants, resulting in more volatile electricity prices. These findings are similar to earlier studies of the liberalized German and Belgian electricity markets, which are also facing the challenges of a nuclear phase-out under depressed European prices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A positive link from A to B means that an increase in A leads to an increase in B. A negative link from A to B means that an increase in A leads to a decrease in B.

  2. 2.

    Reinforcing loops are positive feedback loops which further increase a positive or negative change in the system. Reinforcing loops can be utilized in policy design to destabilize the system. Balancing loops have a damping effect on positive or negative changes in the system and typically stabilize the system.

  3. 3.

    https://www.eex.com/en/market-data/power/spot-market/

  4. 4.

    https://www.mercatoelettrico.org/en/mercati/MercatoElettrico/MPE.aspx

  5. 5.

    https://transparency.entsoe.eu/content/static_content/Static%20content/legacy%20data/year%20selection.html

  6. 6.

    https://www.swissgrid.ch/swissgrid/en/home/experts/topics/energy_data_ch.html

  7. 7.

    http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=en&dossier_id=00767

  8. 8.

    https://www7.ncdc.noaa.gov/CDO/cdo

  9. 9.

    http://www.satel-light.com/indexs.htm

  10. 10.

    http://www.bfe.admin.ch/themen/00526/00541/00542/00630/index.html?lang=en&dossier_id=00766

  11. 11.

    This is not physical scarcity, but scarcity in the sense that other generation options and imports cannot satisfy demand if dam and pumped hydro are not dispatched. In such situations hydro operators could set monopolistic prices.

References

  • Andersson G, Boulouchos K, Bretschger L (2011) Energiezukunft Schweiz. Zürich

    Google Scholar 

  • Barmettler F, Beglinger N, Zeyer C (2013) Cleantech Energiestrategie: Richtig rechnen und wirtschaftlich profitieren, auf CO2-Zielkurs. Bern

    Google Scholar 

  • Betz R, Cludius J, Riesz J (2015) Capacity remuneration mechanisms: overview, implementation in selected European jurisdictions, and implications for Switzerland. Wintherthur

    Google Scholar 

  • Bunn DW, Larsen ER (1992) Sensitivity of reserve margin to factors influencing investment behaviour in the electricity market of England and Wales. Energy Policy 20:420–429

    Article  Google Scholar 

  • Cepeda M, Finon D (2013) How to correct for long-term externalities of large-scale wind power development by a capacity mechanism? Energy Policy 61:671–685

    Article  Google Scholar 

  • Chappin ÉJL (2011) Simulating energy transitions. Delft University of Technology

    Google Scholar 

  • De Vries LJ (2007) Generation adequacy: helping the market do its job. Util Policy 15:20–35

    Article  Google Scholar 

  • De Vries LJ, Heijnen P (2008) The impact of electricity market design upon investment under uncertainty: the effectiveness of capacity mechanisms. Util Policy 16:215–227

    Article  Google Scholar 

  • Densing M (2013) Price-driven hydropower dispatch under uncertainty. In: Kovacevic RM, Pflug GC, Vespucci MT (eds) Handbook of risk management in energy production and trading. Springer, New York, pp 73–104

    Chapter  Google Scholar 

  • Densing M, Panos E, Hirschberg S (2016) Meta-analysis of energy scenario studies: example of electricity scenarios for Switzerland. Energy 109:998–1015

    Article  Google Scholar 

  • ENTSO-E (2014) 10-Year network development plan. Brussels

    Google Scholar 

  • Filippini M (2011) Short-and long-run time-of-use price elasticities in Swiss residential electricity demand. Energy Policy 39:5811–5817

    Article  Google Scholar 

  • Finon D, Johnsen TA, Midttun A (2004) Challenges when electricity markets face the investment phase. Energy Policy 32:1355–1362

    Article  Google Scholar 

  • Ford A (1999) Cycles in competitive electricity markets: a simulation study of the western United States. Energy Policy 27:637–658

    Article  Google Scholar 

  • Ford A (2001) Waiting for the boom: a simulation study of power plant construction in California. Energy Policy 29:847–869

    Article  Google Scholar 

  • Gary S, Larsen ER (2000) Improving firm performance in out-of-equilibrium, deregulated markets using feedback simulation models. Energy Policy 28:845–855

    Article  Google Scholar 

  • Haas R, Lettner G, Auer H, Duic N (2013) The looming revolution: how photovoltaics will change electricity markets in Europe fundamentally. Energy 57:38–43

    Article  Google Scholar 

  • Hammons TJ, Rudnick H, Barroso LA (2002) Latin America: deregulation in a hydro-dominated market. HRW 10:20–27

    Google Scholar 

  • Hasani M, Hosseini SH (2011) Dynamic assessment of capacity investment in electricity market considering complementary capacity mechanisms. Energy 36:277–293

    Article  Google Scholar 

  • Helm D (2002) Energy policy: security of supply, sustainability and competition. Energy Policy 30(3):173–184

    Article  Google Scholar 

  • Hughes TP (1987) The evolution of large technological systems. In: Bijker WE, Hughes TP, Pinch TJ (eds) The social construction of technological systems: new directions in the sociology and history of technology. MIT Press, Cambridge, pp 51–82

    Google Scholar 

  • Huld T, Müller R, Gambardella A (2012) A new solar radiation database for estimating PV performance in Europe and Africa. Sol Energy 86:1803–1815

    Article  Google Scholar 

  • Jäger T, Schmidt S, Karl U (2009) A system dynamics model for the German electricity market–model development and application. In: Proceedings of 27th international conference of the system dynamics society, Albuquerque, NM, pp 26–30

    Google Scholar 

  • Kadoya T, Sasaki T, Ihara S et al (2005) Utilizing system dynamics modeling to examine impact of deregulation on generation capacity growth. Proc IEEE 93:2060–2069

    Article  Google Scholar 

  • Kannan R, Turton H (2011) Documentation on the development of the Swiss TIMES Electricity Model (STEM-E)

    Google Scholar 

  • Kannan R, Turton H (2016) Long term climate change mitigation goals under the nuclear phase out policy: the Swiss energy system transition. Energy Econ 55:211–222

    Article  Google Scholar 

  • Kunsch PL, Friesewinkel J (2014) Nuclear energy policy in Belgium after Fukushima. Energy Policy 66:462–474

    Article  Google Scholar 

  • Kunz S, Dällenbach F, Schaffner B, et al (2004) Konzept Windenergie Schweiz – Grundlagen für die Standortwahl von Windparks. Bern

    Google Scholar 

  • Mitra-Kahn BH (2008) Debunking the myths of computable general equilibrium models. The New School, New York

    Google Scholar 

  • Ochoa P (2007) Policy changes in the Swiss electricity market: analysis of likely market responses. Socio Econ Plan Sci 41:336–349

    Article  Google Scholar 

  • Ochoa P, Van Ackere A (2009) Policy changes and the dynamics of capacity expansion in the Swiss electricity market. Energy Policy 37:1983–1998

    Article  Google Scholar 

  • Olsina F, Garcés F, Haubrich HJ (2006) Modeling long-term dynamics of electricity markets. Energy Policy 34:1411–1433

    Article  Google Scholar 

  • Osorio S, van Ackere A (2016) From nuclear phase-out to renewable energies in the Swiss electricity market. Energy Policy 93:8–22

    Article  Google Scholar 

  • Pattupara R, Kannan R (2016) Alternative low-carbon electricity pathways in Switzerland and it’s neighbouring countries under a nuclear phase-out scenario. Appl Energy 172:152–168

    Article  Google Scholar 

  • Pereira AJ, Saraiva JT (2010) A decision support system for generation expansion planning in competitive electricity markets. Electr Power Syst Res 80:778–787

    Article  Google Scholar 

  • Pöyry (2012) Angebot und Nachfrage nach flexiblen Erzeugungskapazitäten in der Schweiz

    Google Scholar 

  • Prognos AG (2012) Die Energieperspektiven für die Schweiz bis 2050. Basel

    Google Scholar 

  • Pruyt E (2013) Small system dynamics models for big issues: triple jump towards real-world complexity. TU Delft Library, Delft

    Google Scholar 

  • SFOE (2012) Wasserkraftpotenzial der Schweiz – Abschätzung des Ausbaupotenzials der Wasserkraftnutzung im Rahmen der Energiestrategie 2050

    Google Scholar 

  • SFOE (2014) Schweizerische Elektrizitätsstatistik 2013. Ittigen

    Google Scholar 

  • SFOE (2015) Schweizerische Elektrizitätsstatistik 2014. Ittigen

    Google Scholar 

  • SFOE (2016) Schweizerische Statistik der erneurbaren Energien – Ausgabe 2015. Ittigen

    Google Scholar 

  • SFOE (2017) Gesamte Erzeugung und Abgabe elektrischer Energie in der Schweiz 2016

    Google Scholar 

  • Sterman JD (2000) Business dynamics: system thinking and modeling for a complex world. Irwin/McGraw Hill, Boston

    Google Scholar 

  • Šúri M, Huld TA, Dunlop ED, Ossenbrink HA (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81:1295–1305

    Article  Google Scholar 

  • Suryani E, Chou SY, Hartono R, Chen CH (2010) Demand scenario analysis and planned capacity expansion: a system dynamics framework. Simul Model Pract Theory 18:732–751

    Article  Google Scholar 

  • Swissgrid (2015) Données réseaux 2014

    Google Scholar 

  • Teske S, Heiligtag GK (2013) [r]evolution: eine nachhaltige energieversorgung für die Schweiz. Zürich

    Google Scholar 

  • Teufel F, Miller M, Genoese M, Fichtner W (2013) Review of system dynamics models for electricity market simulations. Karlsruhe

    Google Scholar 

  • Trutnevyte E (2016) Does cost optimization approximate the real-world energy transition? Energy 106:182–193

    Article  Google Scholar 

  • van Ackere A, Ochoa P (2010) Managing a hydro-energy reservoir: a policy approach. Energy Policy 38:7299–7311

    Article  Google Scholar 

  • van Baal PA (2016) Business implications of the energy transition in Switzerland. École Polytechnique Fédérale de Lausanne

    Google Scholar 

  • Verhoog R (2018) Three methodological contributions towards modelling endogenous policy-emergence in societal transitions. École Polytechnique Fédérale de Lausanne

    Google Scholar 

  • Verhoog R, Finger M (2016) Governing energy transitions: transition goals in the swiss energy sector. In: Dorsman A, Arslan-Ayaydin Ö, Karan MB (eds) Energy and finance: sustainability in the energy industry. Springer, New York, pp 107–121

    Chapter  Google Scholar 

  • Verhoog R, Ghorbani A, Hardi EE et al (2016) Structuring socio-technical complexity in infrastructure systems: an agent-based model. Int J Complex Appl Sci Technol 1:5–21

    Article  Google Scholar 

  • Vogstad KO (2005) A system dynamics analysis of the nordic electricity market: the transition from fossil fuelled towards a renewable supply within a liberalised electricity market. Norwegian University of Science and Technology

    Google Scholar 

  • Vöhringer F (2012) Linking the swiss emissions trading system with the EU ETS: economic effects of regulatory design alternatives. Swiss J Econ Stat 148:167–196

    Article  Google Scholar 

  • VSE (2012) Scénarios pour l’approvisionnement électrique du futur – rapport global. Aarau

    Google Scholar 

  • Wüstenhagen R, Wolsink M, Bürer MJ (2007) Social acceptance of renewable energy innovation: an introduction to the concept. Energy Policy 35:2683–2691

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Swiss Innovation Agency Innosuisse and is part of the Swiss Competence Center for Energy Research SCCER-CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinier Verhoog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verhoog, R., van Baal, P., Finger, M. (2018). System Dynamics Simulation to Explore the Impact of Low European Electricity Prices on Swiss Generation Capacity Investments. In: Dorsman, A., Ediger, V., Karan, M. (eds) Energy Economy, Finance and Geostrategy. Springer, Cham. https://doi.org/10.1007/978-3-319-76867-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76867-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76866-3

  • Online ISBN: 978-3-319-76867-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics