Skip to main content

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1888 Accesses

Abstract

This chapter provides you with a first foothold toward exploring protein structures. We will examine hemoglobin and papain, two proteins whose structures were first determined in the 1960s, the pioneering days of modern structural biology. The examination of the structure of hemoglobin illuminates the secondary, tertiary, and quaternary structure of proteins, while that of the plant protease papain provides insights into the properties of amino acids in proteins, with an emphasis on hydrogen bonding, ionization, and van der Waals forces. Hydrogen bonds will be illustrated using the structure of tyrosyl-tRNA synthetase, one of the first enzymes specifically modified by mutagenesis to investigate the importance of such bonds in enzymatic catalysis.

In contrast, asparagine is an interesting, quirky, opinionated residue with many unique properties. Jane S. Richardson and David C. Richardson (Richardson and Richardson 1989)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MJ, Ford GC, Koekoek R, Lentz PJ, McPherson A Jr, Rossmann MG, Smiley IE, Schevitz RW, Wonacott AJ (1970) Structure of lactate dehydrogenase at 2.8 Å resolution. Nature 227(5263):1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Albrecht G, Corey RB (1939) The crystal structure of glycine. J Am Chem Soc 61:1087–1103. https://doi.org/10.1021/ja01874a028

    Article  CAS  Google Scholar 

  • Astbury WT, Street A (1932) X-ray studies of the structure of hair, wool, and related fibres I – general. Philos T R Soc Lond 230:75–101. https://doi.org/10.1098/rsta.1932.0003

    Article  Google Scholar 

  • Astbury WT, Woods HJ (1930) The X-ray interpretation of the structure and elastic properties of hair keratin. Nature 126:913–914. https://doi.org/10.1038/126913b0

    Article  CAS  Google Scholar 

  • Bernal JD (1931) The crystal structure of the natural amino acids and related compounds. Z Kristallogr Kristallgeom 78:363–369

    CAS  Google Scholar 

  • Bernal JD, Fankuchen I, Perutz M (1937) An X-ray study of chymotrypsin and haemoglobin. Nature 141:523–524

    Article  Google Scholar 

  • Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 angstrom resolution. Nature 206(4986):757–761

    Article  CAS  PubMed  Google Scholar 

  • Brick P, Bhat TN, Blow DM (1989) Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208(1):83–98

    Google Scholar 

  • Cencic R, Mayer C, Juliano MA, Juliano L, Konrat R, Kontaxis G, Skern T (2007) Investigating the substrate specificity and oligomerisation of the leader protease of foot and mouth disease virus using NMR. J Mol Biol 373(4):1071–1087. https://doi.org/10.1016/j.jmb.2007.08.061

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265(5170):346–355

    Article  CAS  PubMed  Google Scholar 

  • Cleland WW, Frey PA, Gerlt JA (1998) The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem 273(40):25529–25532

    Article  CAS  PubMed  Google Scholar 

  • Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG (1968) Structure of papain. Nature 218(5145):929–932

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Cunningham BA, Gall WE, Gottlieb PD, Rutishauser U, Waxdal MJ (1969) The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A 63(1):78–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedosyuk S, Grishkovskaya I, de Almeida Ribeiro E Jr, Skern T (2014) Characterization and structure of the vaccinia virus NF-kappaB antagonist A46. J Biol Chem 289(6):3749–3762. https://doi.org/10.1074/jbc.M113.512756

    Article  PubMed  CAS  Google Scholar 

  • Fersht AR, Shi JP, Knill-Jones J, Lowe DM, Wilkinson AJ, Blow DM, Brick P, Carter P, Waye MM, Winter G (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314(6008):235–238

    Article  CAS  PubMed  Google Scholar 

  • Harrington DJ, Adachi K, Royer WE Jr (1997) The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol 272(3):398–407. https://doi.org/10.1006/jmbi.1997.1253

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis IG, Kalk KH, Swarte MB, Drenth J (1984) Structure of papain refined at 1.65 Å resolution. J Mol Biol 179(2):233–256

    Article  CAS  PubMed  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610):662–666

    Article  CAS  PubMed  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å Resolution. Nature 185(4711):422–427

    Article  CAS  PubMed  Google Scholar 

  • Kossiakoff AA, Chambers JL, Kay LM, Stroud RM (1977) Structure of bovine trypsinogen at 1.9 Å resolution. Biochemistry 16(4):654–664

    Article  CAS  PubMed  Google Scholar 

  • Ladner RC, Heidner EJ, Perutz MF (1977) The structure of horse methaemoglobin at 2.0 Å resolution. J Mol Biol 114(3):385–414

    Google Scholar 

  • Li L, Li C, Zhang Z, Alexov E (2013) On the dielectric “constant” of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi. J Chem Theory Comput 9(4):2126–2136. https://doi.org/10.1021/ct400065j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matthews BW, Sigler PB, Henderson R, Blow DM (1967) Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature 214(5089):652–656

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF (1939) Absorption spectra of single crystals of hemoglobin in polarized light. Nature 143:731–733

    Article  CAS  Google Scholar 

  • Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Crystallogr 9(10):867–873. https://doi.org/10.1107/S0365110x56002485

    Article  CAS  Google Scholar 

  • Perutz MF (1978) Electrostatic effects in proteins. Science 201(4362):1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Muirhead H, Cox JM, Goaman LC (1968) Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 Å resolution: the atomic model. Nature 219(5150):131–139

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North AC (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185(4711):416–422

    Article  CAS  PubMed  Google Scholar 

  • Pimental GC, McClellan AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  • Richardson JS, Richardson JC (1989) Principles and patterns of protein. In: Fasman GD (ed) Prediction of protein structure and the principles of protein conformation. Plenum Press, New York, pp 1–99

    Google Scholar 

  • Rossmann MG (2009) Chapter 3: recollection of the events leading to the discovery of the structure of haemoglobin. J Mol Biol 392(1):23–32. https://doi.org/10.1016/j.jmb.2009.05.089

    Article  PubMed  CAS  Google Scholar 

  • Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW (1996) The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 3(7):619–625

    Article  CAS  PubMed  Google Scholar 

  • Roy G (1874) On the solvent action of papain on the nitrogenous functions of food. Glasgow Med J 6:33

    Google Scholar 

  • Shipton M, Kierstan MP, Malthouse JP, Stuchbury T, Brocklehurst K (1975) The case for assigning a value of approximately 4 to pKa-i of the essential histidine-cysteine interactive systems of papain, bromelain and ficin. FEBS Lett 50(3):365–368

    Article  CAS  PubMed  Google Scholar 

  • Storer A, Ménard R (2013) Handbook of proteolytic enzymes. In: Rawlings ND, Salvesen G (eds) Handbook of proteolytic enzymes, vol 1, Third edn. Elsevier/AP, Amsterdam, pp 1858–1861

    Chapter  Google Scholar 

  • Wells TNC, Fersht AR (1985) Hydrogen-bonding in enzymatic catalysis analyzed by protein engineering. Nature 316(6029):656–657. https://doi.org/10.1038/316656a0

    Article  CAS  Google Scholar 

  • Wurtz A, Bouchut E (1880) Sur le ferment digestif du carica papaya. Comptes rendu de l'académie des. Sciences 89:425–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skern, T. (2018). Exploring Fundamentals. In: Exploring Protein Structure: Principles and Practice. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-76858-8_3

Download citation

Publish with us

Policies and ethics