Biological Activities of the Amanita Peptide Toxins

  • Jonathan Walton
Chapter

Abstract

The amatoxins, phallotoxins, cycloamanides, and antamanide belong to the special class of secondary metabolites known as cyclic peptides or cyclopeptides – strings of amino acids in which the N and C termini are joined head-to-tail by amide (peptide) bonds ( Chap. 2). Cyclic peptides possess many chemical attributes that contribute to high biological activity, including chemical stability, membrane permeability, and rigidity. The importance of these attributes is discussed in more detail in  Chap. 7. The focus of this chapter is the specific biological activities of the characterized cyclic peptides of Amanita and other mushrooms. The majority of the studies have concerned the amatoxins, followed by the phallotoxins and, distantly, the other peptides. The organization of this chapter proceeds from the whole organism level to the intraorganismal level, concluding with toxin action at the molecular level.

References

  1. Amati P, Blasi F, Di Porzio U, Ricchio A, Trabone C (1975) Hamster α-amanitin-resistant RNA polymerase II able to transcribe polyoma virus genome in somatic cell hybrids. Proc Natl Acad Sci USA 72:753–757CrossRefGoogle Scholar
  2. Anderl J, Echner H, Faulstich H (2012) Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology. Beilstein J Org Chem 8:2072–2084.  https://doi.org/10.3762/bjoc.8.233 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azzolin L, Antolini N, Calderan A, Ruzza P, Sciacovelli M, Marin O, Mammi S, Bernardi P, Rasola A (2011) Antamanide, a derivative of Amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore. PLoS One 6:e16280.  https://doi.org/10.1371/journal.pone.0016280 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barbanti-Brodano G, Derenzini M, Fiume L (1974) Toxic action of a phalloidin-albumin conjugate on cells with a high protein uptake. Nature 248:63–65CrossRefGoogle Scholar
  5. Bartolomei MS, Corden JL (1987) Localization of an α-amanitin resistance mutation in the gene encoding the largest subunit of mouse RNA polymerase II. Mol Cell Biol 7:586–594Google Scholar
  6. Bartolomei MS, Corden JL (1995) Clustered α-amanitin resistance mutations in mouse. Mol Gen Genet 246:778–782CrossRefGoogle Scholar
  7. Ben-Zeev A, Becker Y (1977) Requirement of host cell RNA polymerase II in the replication of herpes simplex virus in α-amanitin-sensitive and –resistant cell lines. Virology 76:246–253CrossRefGoogle Scholar
  8. Bowman EA, Riddle DL, Kelly W (2011) Amino acid substitutions in the Caenorhabditis elegans RNA polymerase II large subunit AMA-1/RPB-1 that result in α-amanitin resistance and/or reduced function. G3 1:411–416.  https://doi.org/10.1534/g3.111.000968 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brueckner F, Cramer P (2008) Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 15:811–818. https://doi.org/10.1038/nsmb.1458 CrossRefGoogle Scholar
  10. Brueckner F, Armache KJ, Cheung A, Damsma GE, Kettenberger H, Lehmann E, Sydow J, Cramer P (2009) Structure-function studies of the RNA polymerase II elongation complex. Acta Crystallogr D Biol Crystallogr 65:112–120.  https://doi.org/10.1107/S0907444908039875 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bryant RE, Adelberg EA, Magee PT (1977) Properties of an altered RNA polymerase I1 activity from an α-amanitin-resistant mouse cell line. Biochemistry 16:4237–4244CrossRefGoogle Scholar
  12. Bushnell DA, Cramer P, Kornberg RD (2002) Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution. Proc Natl Acad Sci USA 99:1218–1222. https://doi.org/10.1073/pnas.251664698 CrossRefGoogle Scholar
  13. Cain AK, Nester EW (1973) Ribonucleic acid polymerase in Allomyces arbuscula. J Bacteriol 115:769–776PubMedPubMedCentralGoogle Scholar
  14. Chafin DR, Guo H, Price DH (1995) Action of α-amanitin during pyrophosphorolysis and elongation by RNA polymerase II. J Biol Chem 270:19114–19119.  https://doi.org/10.1074/jbc.270.32.19114 CrossRefPubMedGoogle Scholar
  15. Chan VL, Whitmore GF, Siminovitch L (1972) Mammalian cells with altered forms of RNA polymerase II. Proc Natl Acad Sci USA 69:3119–3123.  https://doi.org/10.1073/pnas.69.11.3119 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen Y, Weeks J, Mortin MA, Greenleaf AL (1993) Mapping mutations in genes encoding the two large subunits of Drosophila RNA polymerase II defines domains essential for basic transcription functions and for proper expression of developmental genes. Mol Cell Biol 13:4214–4222CrossRefGoogle Scholar
  17. Cheung ACM, Cramer P (2012) A movie of RNA polymerase II transcription. Cell 149:1431–1437.  https://doi.org/10.1016/j.cell.2012.06.006. http://www.mpibpc.mpg.de/12602574/download and https://www.youtube.com/watch?v=WlMV_l88Lus CrossRefPubMedGoogle Scholar
  18. Cooper JA (1987) Effects of cytochalasin and phalloidin on actin. J Cell Biol 105:1473–1478CrossRefGoogle Scholar
  19. Coulter DE, Greenleaf AL (1982) Properties of mutationally altered RNA polymerases II of Drosophila. J Biol Chem 257:1945–1952PubMedGoogle Scholar
  20. Coulter DE, Greenleaf AL (1985) A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro. J Biol Chem 260:13190–13198PubMedGoogle Scholar
  21. Delgado MA, Rintoul MR, Farías RN, Salomón RA (2001) Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J Bacteriol 183:4543–4550.  https://doi.org/10.1128/JB.183.15.4543-4550.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.024 CrossRefPubMedGoogle Scholar
  23. Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P (2013) RNA polymerase I structure and transcription regulation. Nature 502:650–655.  https://doi.org/10.1038/nature12712 CrossRefPubMedGoogle Scholar
  24. Falcigno L, Costantini S, D’Auria G, Bruno BM, Zobeley S, Zanotti G, Paolillo L (2001) Phalloidin synthetic analogues: structural requirements in the interaction with F-actin. Chemistry 7:4665–4673CrossRefGoogle Scholar
  25. Faulstich H, Fiume L (1985) Protein conjugates of fungal toxins. Methods Enzymol 112:225–237CrossRefGoogle Scholar
  26. Faulstich H, Zilker TR (1994) Amatoxins. In: Spoerke DG, Rumack BH (eds) Handbook of mushroom poisoning: diagnosis and treatment. CRC Press, Boca Raton, pp 233–248Google Scholar
  27. Faulstich H, Zobeley S, Rinnerthaler G, Small JV (1988) Fluorescent phallotoxins as probes for filamentous actin. J Muscle Res Cell Motil 9:370–383CrossRefGoogle Scholar
  28. Faulstich H, Zobeley S, Bentrup U, Jockusch BM (1989) Biotinylphallotoxins: preparation and use as actin probes. J Histochem Cytochem 37:1035–1045.  https://doi.org/10.1177/37.7.2499619 CrossRefPubMedGoogle Scholar
  29. Fehrenbach T, Cui Y, Faulstich H, Keppler D (2003) Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins. Naunyn Schmiedeberg’s Arch Pharmacol 368:415–420.  https://doi.org/10.1007/s00210-003-0814-4 CrossRefGoogle Scholar
  30. Fernández-Tornero C, Moreno-Morcillo M, Rashid UJ, Taylor NM, Ruiz FM, Gruene T, Legrand P, Steuerwald U, Müller CW (2013) Crystal structure of the 14-subunit RNA polymerase I. Nature 502:644–649.  https://doi.org/10.1038/nature12636 CrossRefPubMedGoogle Scholar
  31. Fiume L, Barbanti-Brodano G (1974) Selective toxicity of amanitin-albumin conjugates for macrophages. Experientia 30:76–77.  https://doi.org/10.1007/BF01921609 CrossRefGoogle Scholar
  32. Frimmer M (1987) What we have learned from phalloidin. Toxicol Lett 35:169–182CrossRefGoogle Scholar
  33. Gavrilova O, Geyer J, Petzinger E (2007) In vivo relevance of Mrp2-mediated biliary excretion of the Amanita mushroom toxin demethylphalloin. Biochim Biophys Acta 1768:2070–2077.  https://doi.org/10.1016/j.bbamem.2007.07.006 CrossRefPubMedGoogle Scholar
  34. Giami S, Simchen G (1977) Incorporation of [3H]UMP into yeast spheroplasts in a hypotonic solution. Exp Cell Res 106:450–454CrossRefGoogle Scholar
  35. Gong XQ, Nedialkov YA, Burton ZF (2004) α-Amanitin blocks translocation by human RNA polymerase II. J Biol Chem 279:27422–27427.  https://doi.org/10.1074/jbc.M402163200 CrossRefPubMedGoogle Scholar
  36. Greenleaf AL (1983) Amanitin-resistant RNA polymerase II mutations are in the enzyme’s largest subunit. J Biol Chem 258:13403–13406PubMedGoogle Scholar
  37. Greenleaf AL, Borsett LM, Jiamachello PF, Coulter DE (1979) α-Amanitin-resistant D. melanogaster with an altered RNA polymerase II. Cell 18:613–622.  https://doi.org/10.1016/0092-8674(79)90116-8 CrossRefPubMedGoogle Scholar
  38. Guialis A, Beatty BG, Ingles CJ, Crerar MM (1977) Regulation of RNA polymerase II activity in α-amanitin-resistant CHO hybrid cells. Cell 10:53–60.  https://doi.org/10.1016/0092-8674(77)90139-8 CrossRefPubMedGoogle Scholar
  39. Gundala S, Wells LD, Milliano MT, Talkad V, Luxon BA, Neuschwander-Tetri BA (2003) The hepatocellular bile acid transporter Ntcp facilitates uptake of the lethal mushroom toxin α-amanitin. Arch Toxicol 78:68–73.  https://doi.org/10.1007/s00204-003-0527-y CrossRefPubMedGoogle Scholar
  40. Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Paša-Tolić, Pikaard CS (2012) In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol Cell 48:811–818.  https://doi.org/10.1016/j.molcel.2012.09.027 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hager GL, Holland MJ, Rutter WJ (1977) Isolation of ribonucleic acid polymerases I, II, and III from Saccharomyces cerevisiae. Biochemistry 16:1–8CrossRefGoogle Scholar
  42. Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447:653–665.  https://doi.org/10.1007/s00424-003-1168-y CrossRefPubMedGoogle Scholar
  43. He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3:195–206CrossRefGoogle Scholar
  44. Hendzel MJ (2014) The F-act’s of nuclear actin. Curr Opin Cell Biol 28:84–89.  https://doi.org/10.1016/j.ceb.2014.04.003 CrossRefPubMedGoogle Scholar
  45. Hoch HC, Staples RC (1983) Visualization of actin in situ by rhodamine-conjugated phalloin in the fungus Uromyces phaseoli. Eur J Cell Biol 32:52–58PubMedGoogle Scholar
  46. Holtorf H, Schöb H, Kunz C, Waldvogel R, Meins F Jr (1999) Stochastic and nonstochastic post-transcriptional silencing of chitinase and β-1,3-glucanase genes involves increased RNA turnover – possible role for ribosome-independent RNA degradation. Plant Cell 11:471–483PubMedPubMedCentralGoogle Scholar
  47. Holzinger A, Blaas K (2016) Actin-dynamics in plant cells: the function of actin-perturbing substances: jasplakinolide, chondramides, phalloidin, cytochalasins, and latrunculins. Meth Mol Biol 1365:243–261.  https://doi.org/10.1007/978-1-4939-3124-8_13 CrossRefGoogle Scholar
  48. Horgen PA, Griffin DH (1971) Specific inhibitors of the three RNA polymerases from the aquatic fungus Blastocladiella emersonii. Proc Natl Acad Sci USA 68:338–341CrossRefGoogle Scholar
  49. Horgen PA, Vaisius AC, Ammirati JF (1978) The insensitivity of mushroom nuclear RNA polymerase activity to inhibition by amatoxins. Arch Microbiol 118:317–319CrossRefGoogle Scholar
  50. Ingles CJ (1978) Temperature-sensitive RNA polymerase II mutations in Chinese hamster ovary cells. Proc Natl Acad Sci USA 75:405–409CrossRefGoogle Scholar
  51. Izdebska M, Gagat M, Grzanka D, Grzanka A (2013) Ultrastructural localization of F-actin using phalloidin and quantum dots in HL-60 promyelocytic leukemia cell line after cell death induction by arsenic trioxide. Acta Histochem 115:487–495.  https://doi.org/10.1016/j.acthis.2012.11.005 CrossRefPubMedGoogle Scholar
  52. Jacob ST, Sajdel EM, Munro HN (1970) Specific action of α-amanitin on mammalian RNA polymerase protein. Nature 225:60–62CrossRefGoogle Scholar
  53. Jaenike J, Grimaldi DA, Sluder AE, Greenleaf AL (1983) α-Amanitin tolerance in mycophagous Drosophila. Science 221:165–167.  https://doi.org/10.1126/science.221.4606.165 CrossRefPubMedGoogle Scholar
  54. Johnson BC, Preston JF (1979) Unique amanitin resistance of RNA synthesis in isolated nuclei from Amanita species accumulating amanitins. Arch Microbiol 122:161–167CrossRefGoogle Scholar
  55. Johnson BC, Preston JF (1980) α-Amanitin-resistant RNA polymerase II from carpophores of Amanita species accumulating amatoxins. Biochim Biophys Acta 607:102–114CrossRefGoogle Scholar
  56. Kaplan CD, Larsson KM, Kornberg RD (2008) The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by α-amanitin. Mol Cell 30:547–556. https://doi.org/10.1016/j.molcel.2008.04.023 CrossRefGoogle Scholar
  57. Kaster BC, Knippa KC, Kaplan CD, Peterson DO (2016) RNA polymerase II trigger loop mobility: indirect effects of Rpb9. J Biol Chem 291:14883–14895.  https://doi.org/10.1074/jbc.M116.714394 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kaya E, Surmen MG, Yaykasli KO, Karahan S, Oktay M, Turan H, Colakoglu S, Erdem H (2014) Dermal absorption and toxicity of alpha amanitin in mice. Cutan Ocul Toxicol 33:154–160.  https://doi.org/10.3109/15569527.2013.802697 CrossRefPubMedGoogle Scholar
  59. Kedinger C, Gniazdowski M, Mandel JL, Gissinger F, Chambon P (1970) α-Amanitin: a specific inhibitor of one of the two DNA-dependent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun 38:165–171CrossRefGoogle Scholar
  60. Klug A (2001) Structural biology: a marvellous machine for making messages. Science 292:1844–1846.  https://doi.org/10.1126/science.1062384 CrossRefPubMedGoogle Scholar
  61. Kramer W (2011) Transporters, Trojan horses and therapeutics: suitability of bile acid and peptide transporters for drug delivery. Biol Chem 392:77–94.  https://doi.org/10.1515/BC.2011.017 CrossRefPubMedGoogle Scholar
  62. Lachapelle M, Aldrich HC (1988) Phalloidin-gold complexes: a new tool for ultrastructural localization of F-actin. J Histochem Cytochem 36:1197–1202.  https://doi.org/10.1177/36.9.3403970 CrossRefPubMedGoogle Scholar
  63. Lengsfeld AM, Löw I, Wieland T, Dancker P, Hasselbach W (1974) Interaction of phalloidin with actin. Proc Natl Acad Sci USA 71:2803–2807CrossRefGoogle Scholar
  64. Letschert K, Faulstich H, Keller D, Keppler D (2006) Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci 91:140–149.  https://doi.org/10.1093/toxsci/kfj141 CrossRefPubMedGoogle Scholar
  65. Lindell TJ (1984) This week’s citation classic. Current contents no. 29, July 16, 1984. Accessed 5 Jul 2017 at: garfield.library.upenn.edu/classics1984/A1984SY56700002.pdf
  66. Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170:447–449CrossRefGoogle Scholar
  67. Litten W (1975) The most poisonous mushrooms. Sci Am 232:90–101CrossRefGoogle Scholar
  68. Liu X, Qu X, Jiang Y, Chang M, Zhang R, Wu Y, Fu Y, Huang S (2015) Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8:1694–1709.  https://doi.org/10.1016/j.molp.2015.09.013 CrossRefPubMedGoogle Scholar
  69. Lobban PE, Siminovitch L, Ingles CJ (1976) The RNA polymerase II of an α-amanitin-resistant Chinese hamster ovary cell line. Cell 8:65–70CrossRefGoogle Scholar
  70. Loros JJ, Dunlap JC (1991) Neurospora crassa clock-controlled genes are regulated at the level of transcription. Mol Cell Biol 11:558–563CrossRefGoogle Scholar
  71. Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104.  https://doi.org/10.1007/s00425-004-1423-2 CrossRefPubMedGoogle Scholar
  72. Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X, Cheng X, Song PZ, Klaassen CD (2008) Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol Sci 103:35–45.  https://doi.org/10.1093/toxsci/kfn038 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lu J, Trnka MJ, Roh SH, Robinson PJ, Shiau C, Fujimori DG, Chiu W, Burlingame AL, Guan S (2015) Improved peak detection and deconvolution of native electrospray mass spectra from large protein complexes. J Am Soc Mass Spectrom 26:2141–2151.  https://doi.org/10.1007/s13361-015-1235-6 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006.  https://doi.org/10.1039/c2np20070h CrossRefPubMedGoogle Scholar
  75. Maunder JE, Voitk AJ (2010) What we don’t know about slugs and mushrooms. Fungi 3:36–44Google Scholar
  76. Meier-Abt F, Faulstich H, Hagenbuch B (2004) Identification of phalloidin uptake systems of rat and human liver. Biochim Biophys Acta 1664:64–69.  https://doi.org/10.1016/j.bbamem.2004.04.004 CrossRefPubMedGoogle Scholar
  77. Militello KT, Patel V, Chessler AD, Fisher JK, Kasper JM, Gunasekera A, Wirth DF (2005) RNA polymerase II synthesizes antisense RNA in Plasmodium falciparum. RNA 11:365–370.  https://doi.org/10.1261/rna.7940705 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234:1249–1254CrossRefGoogle Scholar
  79. Niedermeyer TH, Daily A, Swiatecka-Hagenbruch M, Moscow JA (2014) Selectivity and potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells. PLoS One 10:e91476.  https://doi.org/10.1371/journal.pone.0091476 CrossRefGoogle Scholar
  80. Nielsen O (1986) Antamanide antagonizes phalloidin-induced human lymphocyte aggregation and prevents leukaemic mice from death: a pilot study. Acta Pharmacol Toxicol 59:249–251CrossRefGoogle Scholar
  81. Nothnagel EA, Barak LS, Sanger JW, Webb WW (1981) Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol 88:364–372CrossRefGoogle Scholar
  82. Oda T, Namba K, Maéda Y (2005) Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis. Biophys J 88:2727–2736.  https://doi.org/10.1529/biophysj.104.047753 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303.  https://doi.org/10.1111/j.1365-313X.2004.02292.x CrossRefPubMedGoogle Scholar
  84. Patturajan M (1995) Purification and characterization of DNA-dependent RNA polymerase II from Candida utilis. Biochem Mol Biol Int 37:295–304PubMedGoogle Scholar
  85. Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, Füllgrabe A, Fuentes AM, Jupp S, Koskinen S, Mannion O, Huerta L, Megy K, Snow C, Williams E, Barzine M, Hastings E, Weisser H, Wright J, Jaiswal P, Huber W, Choudhary J, Parkinson HE, Brazma A (2016) Expression atlas update – an integrated database of gene and protein expression in humans, animals, and plants. Nucl Acids Res 44:D746–D752.  https://doi.org/10.1093/nar/gkv1045 CrossRefPubMedGoogle Scholar
  86. Petzinger E, Burckhardt G, Schwenk M, Faulstich H (1982) Lack of intestinal transport of [3H]-demethylphalloin: comparative studies with phallotoxins and bile acids on isolated small intestinal cells and ileal brush border membrane vesicles. Naunyn Schmiedeberg’s Arch Pharmacol 320:196–200CrossRefGoogle Scholar
  87. Pulman JA, Childs KL, Sgambelluri RM, Walton JD (2016) Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera. BMC Genomics 17:1038.  https://doi.org/10.1186/s12864-016-3378-7 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Quon DV, Delgadillo MG, Johnson PJ (1996) Transcription in the early diverging eukaryote Trichomonas vaginalis: an unusual RNA polymerase II and α-amanitin-resistant transcription of protein-coding genes. J Mol Evol 43:253–262CrossRefGoogle Scholar
  89. Rödicker F, Ossenbühl F, Michels D, Benecke BJ (1999) Faithful in vitro transcription by fission yeas tRNA polymerase III reveals unique alpha-amanitin sensitivity. Gene Expr 8:165–174PubMedGoogle Scholar
  90. Rogalski TM, Bullerjahn AME, Riddle DL (1988) Lethal and amanitin-resistance mutations in the Caenorhabditis elegans ama-1 and ama-2 genes. Genetics 120:409–422PubMedPubMedCentralGoogle Scholar
  91. Rogalski TM, Golomb M, Riddle DL (1990) Mutant Caenorhabditis elegans RNA polymerase II with a 20,000-fold reduced sensitivity to α-amanitin. Genetics 126:889–898PubMedPubMedCentralGoogle Scholar
  92. Rudd MD, Luse DS (1996) Amanitin greatly reduces the rate of transcription by RNA polymerase II ternary complexes but fails to inhibit some transcript cleavage modes. J Biol Chem 271:21549–21558CrossRefGoogle Scholar
  93. Ruzza P, Calderan A, Biondi B, Carrara M, Tancredi T, Borin G (1999) Ion-binding and pharmacological properties of Tyr6 and Tyr9 antamanide analogs. J Pep Res 53:442–452CrossRefGoogle Scholar
  94. Sainsbury S, Bernecky C, Cramer P (2015) Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16:129–143.  https://doi.org/10.1038/nrm3952 CrossRefPubMedGoogle Scholar
  95. Sanford T, Golomb M, Riddle DL (1983) RNA polymerase II from wild-type and amanitin-resistant strains of Caenorhabditis elegans. J Biol Chem 258:12804–12809PubMedGoogle Scholar
  96. Schultz LD, Hall B (1976) Transcription in yeast: α-amanitin sensitivity and other properties which distinguish between RNA polymerases I and III. Proc Natl Acad Sci U S A 73:1029–1033CrossRefGoogle Scholar
  97. Seshadri V, McArthur AG, Sogin ML, Adam RD (2003) Giardia lamblia RNA polymerase II: amanitin-resistant transcription. J Biol Chem 278:27804–27810.  https://doi.org/10.1074/jbc.M303316200 CrossRefPubMedGoogle Scholar
  98. Siemion IZ, Pedyczak A, Trojnar J, Zimecki M, Wieczorek Z (1992) Immunosuppressive activity of antamanide and some of its analogues. Peptides 13:1233–1237CrossRefGoogle Scholar
  99. Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD (2011) Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog 7:e1002280.  https://doi.org/10.1371/journal.ppat.1002280 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Small J, Rottner K, Hahne P, Anderson KI (1999) Visualising the actin cytoskeleton. Microsc Res Tech 47:3–17.  https://doi.org/10.1002/(SICI)1097-0029(19991001)47:1<3::AID-JEMT2>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  101. Somers DG, Pearson ML, Ingles CJ (1975) Regulation of RNA polymerase II activity in a mutant rat myoblast cell line resistant to α-amanitin. Nature 253:372–374CrossRefGoogle Scholar
  102. Steeg CM, Ellis J, Bernstein A (1990) Introduction of specific point mutations into RNA polymerase II by gene targeting in mouse embryonic stem cells: evidence for a DNA mismatch repair mechanism. Proc Natl Acad Sci U S A 87:4680–4684CrossRefGoogle Scholar
  103. Steinmetz MO, Stoffler D, Müller SA, Jahn W, Wolpensinger B, Goldie KN, Engel A, Faulstich H, Aebi U (1998) Evaluating atomic models of F-actin with an undecagold-tagged phalloidin derivative. J Mol Biol 276:1–6.  https://doi.org/10.1006/jmbi.1997.1529 CrossRefPubMedGoogle Scholar
  104. Stirpe F, Fiume L (1967) Effect of α-amanitin on ribonucleic acid synthesis and on ribonucleic acid polymerase in mouse liver. Biochem J 103:67P–68PGoogle Scholar
  105. Stunnenberg HG, Wennekes LM, Spierings T, van den Broek HW (1981) An α-amanitin-resistant DNA-dependent RNA polymerase II from the fungus Aspergillus nidulans. Eur J Biochem 117:121–129CrossRefGoogle Scholar
  106. Tellez de Iñon MT, Leoni PD, Torres HN (1974) RNA polymerase activities in Neurospora crassa. FEBS Lett 39:91–95CrossRefGoogle Scholar
  107. Thell K, Hellinger R, Schabbauer G, Gruber CW (2014) Immunosuppressive peptides and their therapeutic applications. Drug Discov Today 19:645–653.  https://doi.org/10.1016/j.drudis.2013.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Theologis A, Huynh TV, Davis RW (1985) Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183:53–68CrossRefGoogle Scholar
  109. Timberlake WE, Turian G (1974) Multiple DNA-dependent RNA polymerases of Neurospora. Experientia 30:1236–1238CrossRefGoogle Scholar
  110. Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83:633–671.  https://doi.org/10.1152/physrev.00027.2002 CrossRefPubMedGoogle Scholar
  111. Tyler BM, Giles NH (1985) Accurate transcription of cloned Neurospora RNA polymerase II-dependent genes in vitro by homologous soluble extracts. Proc Natl Acad Sci U S A 82:5450–5454CrossRefGoogle Scholar
  112. Vaisius AC, Horgen PA (1979) Purification and characterization of RNA polymerase II resistant to α-amanitin from the mushroom Agaricus bisporus. Biochemistry 18:795–803CrossRefGoogle Scholar
  113. Van Gestel K, Le J, Verbelen JP (2001) A comparison of F-actin labeling methods for light microscopy in different plant specimens: multiple techniques supplement each other. Micron 32:571–578CrossRefGoogle Scholar
  114. Vaňáčová S, Tachezy J, Ullu E, Tschudi C (2001) Unusual diversity in α-amanitin sensitivity of RNA polymerases in trichomonads. Mol Biochem Parasitol 115:239–247CrossRefGoogle Scholar
  115. Vandekerckhove J, Deboben A, Nassal M, Wieland T (1985) The phalloidin binding site of F-actin. EMBO J 4:22815–22818Google Scholar
  116. Verderame M, Alcorta D, Egnor M, Smith K, Pollack R (1980) Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells. Proc Natl Acad Sci USA 77:6624–6628CrossRefGoogle Scholar
  117. Von Olenhusen KG, Wohlfarth-Bottermann KE (1979) Evidence for actin transformation during the contraction-relaxation cycle of cytoplasmic actomyosin: cycle blockade by phalloidin injection. Cell Tissue Res 196:455–470CrossRefGoogle Scholar
  118. Walton JD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fung Genet Biol 30:167–171.  https://doi.org/10.1006/fgbi.2000.1224 CrossRefGoogle Scholar
  119. Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–954.  https://doi.org/10.1016/j.cell.2006.11.023 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Welbourn R, Goldman G, Kobzik L, Valeri CR, Hechtman HB, Shepro D (1985) Attenuation of IL-2-induced multisystem organ edema by phalloidin and antamanide. J Appl Physiol 70:1364–1368.  https://doi.org/10.1152/jappl.1991.70.3.1364 CrossRefGoogle Scholar
  121. Wieczorek Z, Siemion IZ, Zimecki M, Bolewska-Pedyczak E, Wieland T (1993) Immunosuppressive activity in the series of cycloamanide peptides from mushrooms. Peptides 14:1–5CrossRefGoogle Scholar
  122. Wieland T (1986) Peptides of poisonous Amanita mushrooms. Springer, New YorkCrossRefGoogle Scholar
  123. Wieland T, Faulstich H (1991) Fifty years of amanitin. Experientia 47:1186–1193CrossRefGoogle Scholar
  124. Wieland T, Götzendörfer C, Dabrowski J, Lipscomb WN, Shoham G (1983) Unexpected similarity of the structures of the weakly toxic amanitin (S)-sulfoxide and the highly toxic (R)-sulfoxide and sulfone as revealed by proton nuclear magnetic resonance and X-ray analysis. Biochemistry 22:1264–1271CrossRefGoogle Scholar
  125. Wulf E, Bautz L (1976) RNA polymerase B from an α-amanitin resistant mouse myeloma cell line. FEBS Lett 69:6–10CrossRefGoogle Scholar
  126. Wulf E, Deboben A, Bautz FA, Faulstich H, Wieland T (1979) Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci USA 76:4498–4502CrossRefGoogle Scholar
  127. Xue JH, Wu P, Chi YL, Xu LX, Wei XY (2011) Cyclopeptides from Amanita exitialis. Nat Prod Bioprospect 1:52–66CrossRefGoogle Scholar
  128. Yanagida T, Nakase M, Nishiyama K, Oosawa F (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307:58–60CrossRefGoogle Scholar
  129. Young HA, Whiteley HR (1975) Deoxyribonucleic acid-dependent ribonucleic acid polymerases in the dimorphic fungus Mucor rouxii. J Biol Chem 250:479–487PubMedGoogle Scholar
  130. Yu YP, Jackson SL, Garrill A (2004) Two distinct distributions of F-actin are present in the hyphal apex of the oomycete Achlya bisexualis. Plant Cell Physiol 45:275–280CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonathan Walton
    • 1
  1. 1.United States Department of Energy Plant Research Lab and Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations