Introduction

  • Jonathan Walton
Chapter

Abstract

The concept of a mushroom toxin embraces a large chemical and taxonomic territory, since many mushrooms are at least mildly deleterious to some organism or another. This monograph focuses on the cyclic peptide toxins characteristic of, but not exclusive to, species of Amanita in section Phalloideae, whose fruiting bodies (mushrooms) are known by the common names “death cap” and “destroying angel.” One group of the cyclic peptide toxins, the amatoxins, exemplified by α-amanitin, account for almost all fatal mushroom poisonings. Although primarily associated with the genus Amanita from which they were first isolated, the amatoxins are also found in the unrelated mushroom genera Galerina, Lepiota, and perhaps Conocybe.

References

  1. Abel JJ, Ford WW (1907) On the poisons of Amanita phalloides. J Biol Chem 2:273–288Google Scholar
  2. Bas C (1969) Morphology and subdivision of Amanita and a monograph on its section Lepidella. Persoonia 5:285–579Google Scholar
  3. Bauldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977.  https://doi.org/10.1126/science.290.5493.972 CrossRefGoogle Scholar
  4. Benjamin DR (1995) Mushrooms: poisons and panaceas. WH Freeman, New YorkGoogle Scholar
  5. Bone E (2011) Mycophilia: revelations from the weird world of mushrooms. Rodale, New YorkGoogle Scholar
  6. Bresinsky A, Besl H (1990) A colour atlas of poisonous fungi: a handbook for pharmacists, doctors, and biologists. Wolfe Publishing, LondonGoogle Scholar
  7. Cai Q, Tulloss RE, Tang LP, Tolgor B, Zhang P, Chen ZH, Yang ZL (2014) Multi-locus phylogeny of lethal amanitas: implications for species diversity and historical biogeography. BMC Evol Biol 14:143.  https://doi.org/10.1186/1471-2148-14-143 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai Q, Cui YY, Yang ZL (2016) Lethal Amanita species in China. Mycologia 108:993–1009.  https://doi.org/10.3852/16-008 CrossRefPubMedGoogle Scholar
  9. Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  10. Chaib De Mares M, Hess J, Floudas D, Lipzen A, Choi C, Kennedy M, Grigoriev IV, Pringle A (2014) Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita. New Phytol 205:1552–1564. https://doi.org/10.1111/nph.13140CrossRefGoogle Scholar
  11. Clémencon H (2012) Cytology and plectology of the Hymenomycetes, 2nd edn. J. Cramer, StuttgartGoogle Scholar
  12. Dunk CW, Lebel T, Keane PJ (2012) Characterisation of ectomycorrhizal formation by the exotic fungus Amanita muscaria with Nothofagus cunninghamii in Victoria, Australia. Mycorrhiza 22:135–147.  https://doi.org/10.1007/s00572-011-0388-9 CrossRefPubMedGoogle Scholar
  13. Embong Z, Wan Hitam WH, Yean CY, Rashid NH, Kamarudin B, Abidin SK, Osman S, Zainuddin ZF, Ravichandran M (2008) Specific detection of fungal pathogens by 18S rRNA gene PCR in microbial keratitis. BMC Ophthalmol 8:7.  https://doi.org/10.1186/1471-2415-8-7 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefGoogle Scholar
  15. Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704.  https://doi.org/10.1093/nar/gkt1183 CrossRefGoogle Scholar
  16. Hallen HE, Adams GC, Eicker A (2002) Amatoxins and phallotoxins in indigenous and introduced South African Amanita species. S African J Bot 68:322–326CrossRefGoogle Scholar
  17. Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133.  https://doi.org/10.1038/nrmicro2963 CrossRefPubMedGoogle Scholar
  18. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher level phylogenetic classification of the fungi. Mycol Res 111:509–547.  https://doi.org/10.1016/j.mycres.2007.03.004 CrossRefPubMedGoogle Scholar
  19. Hrynkiewicz K, Baum C (2013) Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Environ Technol 34:225–230.  https://doi.org/10.1080/09593330.2012.689369 CrossRefPubMedGoogle Scholar
  20. Luo H, Hallen-Adams HE, Scott-Craig JS, Walton JD (2010) Co-localization of amanitin and a candidate toxin-processing prolyl oligopeptidase in Amanita basidiocarps. Eukaryot Cell 9:1891–1900.  https://doi.org/10.1128/EC.00161-10 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lynen F, Wieland U (1938) Über die Giftstoffe des Knollenblätterpilzes. IV. Kristallisation von Phalloidin. Liebigs Ann Chem 533:93–117CrossRefGoogle Scholar
  22. Marley GA (2010) Chanterelle dreams, Amanita nightmares: the love, lore, and mystique of mushrooms. Chelsea Green, VermontGoogle Scholar
  23. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995. https://doi.org/10.1080/15572536.2006.11832627CrossRefGoogle Scholar
  24. Michelot D, Melendez-Howell LM (2003) Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol Res 107:131–146CrossRefGoogle Scholar
  25. Miller OK Jr, Hemmes DE, Wong G (1988) Amanita marmorata subsp. myrtacearum, a new subspecies in Amanita section Phalloideae from Hawaii. Mycologia 88:140–145Google Scholar
  26. Money NP (2011) Mushroom. Oxford University Press, New YorkCrossRefGoogle Scholar
  27. Moore D (2013) Fungal biology in the origin and emergence of life. Cambridge University, Cambridge, UK. ISBN: 978- 11-07652-77-4CrossRefGoogle Scholar
  28. Nagendran S, Hallen-Adams HE, Paper JM, Aslam N, Walton JD (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fung Genet Biol 46:427–435CrossRefGoogle Scholar
  29. Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant-Microbe Interact 11:167–176CrossRefGoogle Scholar
  30. Petersen JH (2013) The kingdom of fungi. Princeton University Press, PrincetonCrossRefGoogle Scholar
  31. Pringle A, Adams RI, Cross HB, Bruns TD (2009) The ectomycorrhizal fungus Amanita phalloides was introduced and is expanding its range on the west coast of North America. Mol Ecol 18:817–833.  https://doi.org/10.1111/j.1365-294X.2008.04030.x CrossRefPubMedGoogle Scholar
  32. Redhead SA, Vizzini A, Drehmel DC, Contu M (2016) Saproamanita, a new name for both Lepidella E.-J. Gilbert and Aspidella E.-J. Gilbert (Amaniteae, Amanitaceae). IMA Fungus 7:119–129.  https://doi.org/10.5598/imafungus.2016.07.01.07 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85CrossRefGoogle Scholar
  34. Spoerke DG, Rumack BH (1994) Handbook of mushroom poisoning. CRC Press, Boca RatonGoogle Scholar
  35. Tulloss RE, Yang ZL (2016) Family Amanitaceae. Tulloss RE, Yang ZL Amanitaceae studies. [http://www.amanitaceae.org?Family+Amanitaceae ]. Accessed 6 Jul 2016
  36. Tulloss RE, Kuyper TW, Vellinga EC, Yang ZL, Halling RE, Geml J, Sánchez-Ramírez S, Gonçalves SC, Hess J, Pringle A (2016) The genus Amanita should not be split. Amanitaceae 1(3):1–16. Available at www.amanitaceathejournal.org Google Scholar
  37. Vellinga EC, Wolfe BE, Pringle A (2009) Global patterns of ectomycorrhizal introductions. New Phytol 181:960–973.  https://doi.org/10.1111/j.1469-8137.2008.02728.x CrossRefPubMedGoogle Scholar
  38. Vizzini A, Contu M, Ercole E, Voyron S (2012) Rivalutazione e delimitazione del genere Aspidella (Agaricales, Amanitaceae), nuovamente separato da Amanita. Micol Veget Medit 27:75–90Google Scholar
  39. Wasson RG (1971) Soma: divine mushroom of immortality. Harcourt Brace Jovanovich, New YorkGoogle Scholar
  40. Wasson RG (1979) Traditional use in North America of Amanita muscaria for divinatory purposes. J Psychedelic Drugs 11:25–28CrossRefGoogle Scholar
  41. Webster J, Weber RWS (2007) Introduction to fungi, Third edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Wieland T (1986) Peptides of poisonous Amanita mushrooms. Springer, BerlinCrossRefGoogle Scholar
  43. Wieland H, Hallermayer R (1941) Über die Giftstoffe des grünen Knollenblätterpilzes, VI. Amanitin, das Hauptgift des Knollenblätterpilzes. Liebigs Ann Chem 548:1–18CrossRefGoogle Scholar
  44. Wieland T (1983) The toxic peptides from Amanita mushrooms. Int J Pept Protein Res 22:257–276CrossRefGoogle Scholar
  45. Wieland T, Faulstich H (1991) Fifty years of amanitin. Experientia 47:1186–1193CrossRefGoogle Scholar
  46. Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr Genet 51:71–78. doi: 10.1007/s00294-006-0106-x CrossRefPubMedGoogle Scholar
  47. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579CrossRefGoogle Scholar
  48. Wolfe BE, Richard F, Cross HB, Pringle A (2010) Distribution and abundance of the introduced ectomycorrhizal fungus Amanita phalloides in North America. New Phytol 185:803–816.  https://doi.org/10.1111/j.1469-8137.2009.03097.x CrossRefPubMedGoogle Scholar
  49. Wolfe BE, Tulloss RE, Pringle A (2012) The irreversible loss of a decomposition pathway marks the single origin of an ectomycorrhizal symbiosis. PLoS One 7:e39597.  https://doi.org/10.1371/journal.pone.0039597 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yoshida I, Kiho T, Usui S, Sakushima M, Ukai S (1996) Polysaccharides in fungi. XXXVII. Immunomodulating activities of carboxymethylated derivatives of linear (1→3)-α-D-glucans extracted from the fruiting bodies of Agrocybe cylindracea and Amanita muscaria. Biol Pharm Bull 19:114–121CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonathan Walton
    • 1
  1. 1.United States Department of Energy Plant Research Lab and Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations