Skip to main content

Annelida: Recognition of Nonself in Earthworms

  • Chapter
  • First Online:

Abstract

Earthworms belonging to oligochaete annelids became an important model for comparative immunologists in the early 1960s with the publication of transplantation experimental results reporting that autologous transplants of earthworm body wall pieces were accepted, but xenograft or even allografts were not. These transplantation experiments proved the existence of self or nonself recognition in earthworms, paving the way for extensive studies on the earthworm immune mechanisms that evolved to prevent the invasion of pathogens. In 1989 Charles Janeway, Jr., published a general concept based on the existence of pattern recognition receptors (PRRs) on the immune cells that recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns and thus trigger the immune response to potential pathogens. In the present review, the structure, specificity, and expression profile of PRRs characterized in earthworms are discussed and their role in innate defense suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso-Bedate M, Sequeros E (1985) Suggested regulatory mechanisms for caudal regeneration in Allolobophora molleri (Annelida, Oligochaeta). Comp Biochem Physiol A 81(2):225–228

    Article  Google Scholar 

  • Amparyup P, Sutthangkul J, Charoensapsri W, Tassanakajon A (2016) Pattern recognition protein binds to lipopolysaccharide and beta-1,3-glucan and activates shrimp prophenoloxidase system (vol 287, pg 10060, 2012). J Biol Chem 291(20):10949–10949

    Article  CAS  Google Scholar 

  • Ashida M, Yamazaki IH (1990) In: Ohnishi E, Ishizaki H (eds) Biochemistry of the phenol oxidase system in insects: with special reference to its activation. Molting and metamorphosis. Japan Scientific Society Press, Tokyo, pp 239–265

    Google Scholar 

  • Bachman ES, McClay DR (1996) Molecular cloning of the first metazoan beta-1,3-glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proc Natl Acad Sci U S A 93(13):6808–6813

    Article  CAS  Google Scholar 

  • Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunology 21:81–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baron OL, van West P, Industri B, Ponchet M, Dubreuil G, Gourbal B, Reichhart JM, Coustau C (2013) Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections. PLoS Pathog 9(12):e1003792

    Article  Google Scholar 

  • Beamer LJ, Fischer D, Eisenberg D (1998) Detecting distant relatives of mammalian LPS-binding and lipid transport proteins. Protein Sci 7(7):1643–1646

    Article  CAS  Google Scholar 

  • Beschin A, Bilej M, Hanssens F, Raymakers J, Van Dyck E, Revets H, Brys L, Gomez J, De Baetselier P, Timmermans M (1998) Identification and cloning of a glucan- and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem 273(38):24948–24954

    Article  CAS  Google Scholar 

  • Beschin A, Bilej M, Brys L, Torreele E, Lucas R, Magez S, De Baetselier P (1999) Convergent evolution of cytokines. Nature 400(6745):627–628

    Article  CAS  Google Scholar 

  • Bilej M, Brys L, Beschin A, Lucas R, Vercauteren E, Hanusova R, De Baetselier P (1995) Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunol Lett 45(1–2):123–128

    Article  CAS  Google Scholar 

  • Bilej M, Rossmann P, Sinkora M, Hanusova R, Beschin A, Raes G, De Baetselier P (1998) Cellular expression of the cytolytic factor in earthworms Eisenia foetida. Immunol Lett 60(1):23–29

    Article  CAS  Google Scholar 

  • Bilej M, De Baetselier P, Van Dijck E, Stijlemans B, Colige A, Beschin A (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J Biol Chem 276(49):45840–45847

    Article  CAS  Google Scholar 

  • Bilej M, Joskova R, Van den Bergh R, Prochazkova P, Silerova M, Ameloot P, De Baetselier P, Beschin A (2006) An invertebrate TNF functional analogue activates macrophages via lectin-saccharide interaction with ion channels. Int Immunol 18(12):1663–1670

    Article  CAS  Google Scholar 

  • Bloc A, Lucas R, Van Dijck E, Bilej M, Dunant Y, De Baetselier P, Beschin A (2002) An invertebrate defense molecule activates membrane conductance in mammalian cells by means of its lectin-like domain. Dev Comp Immunol 26(1):35–43

    Article  CAS  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Article  CAS  Google Scholar 

  • Cheng WT, Liu CH, Tsai CH, Chen JC (2005) Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18(4):297–310

    Article  CAS  Google Scholar 

  • Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila. Science 296(5566):359–362

    Article  CAS  Google Scholar 

  • Cooper EL (1970) Transplantation immunity in helminths and annelids. Transplant Proc 2:216–221

    CAS  PubMed  Google Scholar 

  • Cooper EL, Roch P (1994) In: Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (eds) Immunological profile of annelids: transplantation immunity. Immunology of Annelids. CRC Press, Boca Raton/Ann Arbor, pp 201–243

    Google Scholar 

  • Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A (2011) Characterization and immune function of two intracellular sensors, HmTLR1 and HmNLR, in the injured CNS of an invertebrate. Dev Comp Immunol 35(2):214–226

    Article  CAS  Google Scholar 

  • Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612

    Article  CAS  Google Scholar 

  • Dimopoulos G, Richman A, Muller HM, Kafatos FC (1997) Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94(21):11508–11513

    Article  CAS  Google Scholar 

  • Dvorak J, Roubalova R, Prochazkova P, Rossmann P, Skanta F, Bilej M (2016) Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev Comp Immunol 57:67–74

    Article  CAS  Google Scholar 

  • Elsbach P, Weiss J (1998) Role of the bactericidal/permeability-increasing protein in host defence. Curr Opin Immunol 10(1):45–49

    Article  CAS  Google Scholar 

  • Fenton MJ, Golenbock DT (1998) LPS-binding proteins and receptors. J Leukoc Biol 64(1):25–32

    Article  CAS  Google Scholar 

  • Fontt EO, De Baetselier P, Heirman C, Thielemans K, Lucas R, Vray B (1998) Effects of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha on Trypanosoma cruzi trypomastigotes. Infect Immun 66(6):2722–2727

    CAS  PubMed Central  Google Scholar 

  • Fontt OE, Beschin A, Van Dijck E, Vercruysse V, Bilej M, Lucas R, De Baetselier P, Vray B (2002) Trypanosoma cruzi is lysed by coelomic cytolytic factor-1, an invertebrate analogue of tumor necrosis factor, and induces phenoloxidase activity in the coelomic fluid of Eisenia foetida foetida. Dev Comp Immunol 26(1):27–34

    Article  Google Scholar 

  • Glazer L, Roth Z, Weil S, Aflalo ED, Khalaila I, Sagi A (2015) Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65. J Proteome 128:333–343

    Article  CAS  Google Scholar 

  • Gonzalez M, Gueguen Y, Destoumieux-Garzon D, Romestand B, Fievet J, Pugniere M, Roquet F, Escoubas JM, Vandenbulcke F, Levy O, Saune L, Bulet P, Bachere E (2007) Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI. Proc Natl Acad Sci U S A 104(45):17759–17764

    Article  CAS  Google Scholar 

  • Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416(6881):640–644

    Article  CAS  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300(1):349–365

    Article  CAS  Google Scholar 

  • Hostetter R, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9:384–392

    Article  CAS  Google Scholar 

  • Imler JL, Hoffmann JA (2002) Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr Top Microbiol Immunol 270:63–79

    CAS  PubMed  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  Google Scholar 

  • Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13(1):11–16

    Article  CAS  Google Scholar 

  • Keilin ND (1925) Parasitic autotomy of the host as a mode of liberation of coelomic parasites from the body of the earthworm. Parasitology 17:170–172

    Article  Google Scholar 

  • Kim YS, Han SJ, Ryu JH, Choi KH, Hong YS, Chung YH, Perrot S, Raibaud A, Brey PT, Lee WJ (2000) Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J Biol Chem 275(3):2071–2079

    Article  CAS  Google Scholar 

  • Kozhemyako VB, Rebrikov DV, Lukyanov SA, Bogdanova EA, Marin A, Mazur AK, Kovalchuk SN, Agafonova EV, Sova VV, Elyakova LA, Rasskazov VA (2004) Molecular cloning and characterization of an endo-1,3-beta-D-glucanase from the mollusk Spisula sachalinensis. Comp Biochem Physiol B Biochem Mol Biol 137(2):169–178

    Article  Google Scholar 

  • Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 93(15):7888–7893

    Article  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983

    Article  CAS  Google Scholar 

  • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4(5):478–484

    Article  CAS  Google Scholar 

  • Lucas R, Magez S, De Leys R, Fransen L, Scheerlinck JP, Rampelberg M, Sablon E, De Baetselier P (1994) Mapping the lectin-like activity of tumor necrosis factor. Science 263(5148):814–817

    Article  CAS  Google Scholar 

  • Ma C, Kanost MR (2000) A beta1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J Biol Chem 275(11):7505–7514

    Article  CAS  Google Scholar 

  • Magez S, Geuskens M, Beschin A, del Favero H, Verschueren H, Lucas R, Pays E, de Baetselier P (1997) Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137(3):715–727

    Article  CAS  Google Scholar 

  • Mendez-Fernandez L, Martinez-Madrid M, Rodriguez P (2013) Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Muller) based on lethal and sublethal effects. Ecotoxicology 22(10):1445–1460

    Article  CAS  Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801

    Article  CAS  Google Scholar 

  • Ochiai M, Ashida M (2000) A pattern-recognition protein for beta-1,3-glucan. The binding domain and the cDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J Biol Chem 275(7):4995–5002

    Article  CAS  Google Scholar 

  • Paris-Palacios S, Mosleh YY, Almohamad M, Delahaut L, Conrad A, Arnoult F, Biagianti-Risbourg S (2010) Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): a study of significance of autotomy and its utility as a biomarker. Aquat Toxicol 98(1):8–14

    Article  CAS  Google Scholar 

  • Parry MJ (1978) Survival of body wall autografts, allografts and xenografts in the earthworm Eisenia foetida. J Invert Pathol 31:383–388

    Article  CAS  Google Scholar 

  • Pauchet Y, Freitak D, Heidel-Fischer HM, Heckel DG, Vogel H (2009) Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. J Biol Chem 284(4):2214–2224

    Article  CAS  Google Scholar 

  • Prochazkova P, Silerova M, Stijlemans B, Dieu M, Halada P, Joskova R, Beschin A, De Baetselier P, Bilej M (2006) Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. J Comp Physiol B 176(6):581–587

    Article  CAS  Google Scholar 

  • Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314(5801):952–956

    Article  CAS  Google Scholar 

  • Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:183–349

    Article  CAS  Google Scholar 

  • Rodet F, Tasiemski A, Boidin-Wichlacz C, Van Camp C, Vuillaume C, Slomianny C, Salzet M (2015) Hm-MyD88 and Hm-SARM: two key regulators of the neuroimmune system and neural repair in the medicinal leech. Sci Rep 5:9624

    Article  CAS  Google Scholar 

  • Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A (2009) Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. J Immunol 183(11):7119–7128

    Article  CAS  Google Scholar 

  • Seki N, Muta T, Oda T, Iwaki D, Kuma K, Miyata T, Iwanaga S (1994) Horseshoe crab (1,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J Biol Chem 269(2):1370–1374

    CAS  PubMed  Google Scholar 

  • Seymour J, Nappi AJ, Valembois P (1992) Characterization of a phenoloxidase of the coelomic fluid of the earthworm Eisenia fetida andrei. Anim Biol 2:1–6

    Google Scholar 

  • Shin SW, Park SS, Park DS, Kim MG, Kim SC, Brey PT, Park HY (1998) Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochem Mol Biol 28(11):827–837

    Article  CAS  Google Scholar 

  • Silerova M, Prochazkova P, Joskova R, Josens G, Beschin A, De Baetselier P, Bilej M (2006) Comparative study of the CCF-like pattern recognition protein in different Lumbricid species. Dev Comp Immunol 30(9):765–771

    Article  CAS  Google Scholar 

  • Skanta F, Roubalova R, Dvorak J, Prochazkova P, Bilej M (2013) Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol 41(4):694–702

    Article  CAS  Google Scholar 

  • Skanta F, Prochazkova P, Roubalova R, Dvorak J, Bilej M (2016) LBP/BPI homologue in Eisenia andrei earthworms. Dev Comp Immunol 54(1):1–6

    Article  CAS  Google Scholar 

  • Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10(1):23–28

    Article  Google Scholar 

  • Söderhäll K, Cerenius L, Johansson MW (1994) The prophenoloxidase activating system and its role in invertebrate defence. Ann N Y Acad Sci 712:155–161

    Article  Google Scholar 

  • Tasiemski A, Schikorski D, Le Marrec-Croq F, Camp CPV, Boidin-Wichlacz U, Sautiere PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively the marine annelid, expressed in the NK cells-like of Nereis diversicolor. Dev Comp Immunol 31(8):749–762

    Article  CAS  Google Scholar 

  • Valembois P (1971) Etude ultrastructurale des coelomocytes du lombricien Eisenia foetida Sav. Bull Soc Zool Fr 96:59–72

    Google Scholar 

  • Valembois P, Lassegues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 16(2–3):95–101

    Article  CAS  Google Scholar 

  • Valembois P, Seymour J, Lassegues M (1994) Evidence of lipofuscin and melanin in the brown body of the earthworm Eisenia fetida andrei. Cell Tissue Res 277(1):183–188

    Article  CAS  Google Scholar 

  • Yamamoto M, Aono R, Horikoshi K (1993) Structure of the 87-kDa beta-1,3-glucanase gene of Bacillus circulans IAM1165 and properties of the enzyme accumulated in the periplasm of Escherichia coli carrying the gene. Biosci Biotechnol Biochem 57(9):1518–1525

    Article  CAS  Google Scholar 

  • Zheng LP, Hou L, Chang AK, Yu MA, Ma JA, Li XA, Zou XY (2011) Expression pattern of a Gram-negative bacteria-binding protein in early embryonic development of Artemia sinica and after bacterial challenge. Dev Comp Immunol 35(1):35–43

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 671881. Special thanks to Miss Agáta Procházková for her help drawing a picture of an earthworm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bilej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bilej, M., Procházková, P., Roubalová, R., Škanta, F., Dvořák, J. (2018). Annelida: Recognition of Nonself in Earthworms. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_7

Download citation

Publish with us

Policies and ethics