Annelida: Recognition of Nonself in Earthworms



Earthworms belonging to oligochaete annelids became an important model for comparative immunologists in the early 1960s with the publication of transplantation experimental results reporting that autologous transplants of earthworm body wall pieces were accepted, but xenograft or even allografts were not. These transplantation experiments proved the existence of self or nonself recognition in earthworms, paving the way for extensive studies on the earthworm immune mechanisms that evolved to prevent the invasion of pathogens. In 1989 Charles Janeway, Jr., published a general concept based on the existence of pattern recognition receptors (PRRs) on the immune cells that recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns and thus trigger the immune response to potential pathogens. In the present review, the structure, specificity, and expression profile of PRRs characterized in earthworms are discussed and their role in innate defense suggested.


Annelids CCF Coelomic fluid Coelomocytes Earthworms Eisenia andrei Innate immunity LBP/BPI Pathogen-associated molecular patterns Pattern recognition receptors Recognition TLR Transplantation 



This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 671881. Special thanks to Miss Agáta Procházková for her help drawing a picture of an earthworm.


  1. Alonso-Bedate M, Sequeros E (1985) Suggested regulatory mechanisms for caudal regeneration in Allolobophora molleri (Annelida, Oligochaeta). Comp Biochem Physiol A 81(2):225–228CrossRefGoogle Scholar
  2. Amparyup P, Sutthangkul J, Charoensapsri W, Tassanakajon A (2016) Pattern recognition protein binds to lipopolysaccharide and beta-1,3-glucan and activates shrimp prophenoloxidase system (vol 287, pg 10060, 2012). J Biol Chem 291(20):10949–10949CrossRefGoogle Scholar
  3. Ashida M, Yamazaki IH (1990) In: Ohnishi E, Ishizaki H (eds) Biochemistry of the phenol oxidase system in insects: with special reference to its activation. Molting and metamorphosis. Japan Scientific Society Press, Tokyo, pp 239–265Google Scholar
  4. Bachman ES, McClay DR (1996) Molecular cloning of the first metazoan beta-1,3-glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proc Natl Acad Sci U S A 93(13):6808–6813CrossRefGoogle Scholar
  5. Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunology 21:81–86PubMedPubMedCentralGoogle Scholar
  6. Baron OL, van West P, Industri B, Ponchet M, Dubreuil G, Gourbal B, Reichhart JM, Coustau C (2013) Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections. PLoS Pathog 9(12):e1003792CrossRefGoogle Scholar
  7. Beamer LJ, Fischer D, Eisenberg D (1998) Detecting distant relatives of mammalian LPS-binding and lipid transport proteins. Protein Sci 7(7):1643–1646CrossRefGoogle Scholar
  8. Beschin A, Bilej M, Hanssens F, Raymakers J, Van Dyck E, Revets H, Brys L, Gomez J, De Baetselier P, Timmermans M (1998) Identification and cloning of a glucan- and lipopolysaccharide-binding protein from Eisenia foetida earthworm involved in the activation of prophenoloxidase cascade. J Biol Chem 273(38):24948–24954CrossRefGoogle Scholar
  9. Beschin A, Bilej M, Brys L, Torreele E, Lucas R, Magez S, De Baetselier P (1999) Convergent evolution of cytokines. Nature 400(6745):627–628CrossRefGoogle Scholar
  10. Bilej M, Brys L, Beschin A, Lucas R, Vercauteren E, Hanusova R, De Baetselier P (1995) Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunol Lett 45(1–2):123–128CrossRefGoogle Scholar
  11. Bilej M, Rossmann P, Sinkora M, Hanusova R, Beschin A, Raes G, De Baetselier P (1998) Cellular expression of the cytolytic factor in earthworms Eisenia foetida. Immunol Lett 60(1):23–29CrossRefGoogle Scholar
  12. Bilej M, De Baetselier P, Van Dijck E, Stijlemans B, Colige A, Beschin A (2001) Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J Biol Chem 276(49):45840–45847CrossRefGoogle Scholar
  13. Bilej M, Joskova R, Van den Bergh R, Prochazkova P, Silerova M, Ameloot P, De Baetselier P, Beschin A (2006) An invertebrate TNF functional analogue activates macrophages via lectin-saccharide interaction with ion channels. Int Immunol 18(12):1663–1670CrossRefGoogle Scholar
  14. Bloc A, Lucas R, Van Dijck E, Bilej M, Dunant Y, De Baetselier P, Beschin A (2002) An invertebrate defense molecule activates membrane conductance in mammalian cells by means of its lectin-like domain. Dev Comp Immunol 26(1):35–43CrossRefGoogle Scholar
  15. Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126CrossRefGoogle Scholar
  16. Cheng WT, Liu CH, Tsai CH, Chen JC (2005) Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18(4):297–310CrossRefGoogle Scholar
  17. Choe KM, Werner T, Stoven S, Hultmark D, Anderson KV (2002) Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila. Science 296(5566):359–362CrossRefGoogle Scholar
  18. Cooper EL (1970) Transplantation immunity in helminths and annelids. Transplant Proc 2:216–221PubMedGoogle Scholar
  19. Cooper EL, Roch P (1994) In: Vetvicka V, Sima P, Cooper EL, Bilej M, Roch P (eds) Immunological profile of annelids: transplantation immunity. Immunology of Annelids. CRC Press, Boca Raton/Ann Arbor, pp 201–243Google Scholar
  20. Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A (2011) Characterization and immune function of two intracellular sensors, HmTLR1 and HmNLR, in the injured CNS of an invertebrate. Dev Comp Immunol 35(2):214–226CrossRefGoogle Scholar
  21. Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612CrossRefGoogle Scholar
  22. Dimopoulos G, Richman A, Muller HM, Kafatos FC (1997) Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94(21):11508–11513CrossRefGoogle Scholar
  23. Dvorak J, Roubalova R, Prochazkova P, Rossmann P, Skanta F, Bilej M (2016) Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev Comp Immunol 57:67–74CrossRefGoogle Scholar
  24. Elsbach P, Weiss J (1998) Role of the bactericidal/permeability-increasing protein in host defence. Curr Opin Immunol 10(1):45–49CrossRefGoogle Scholar
  25. Fenton MJ, Golenbock DT (1998) LPS-binding proteins and receptors. J Leukoc Biol 64(1):25–32CrossRefGoogle Scholar
  26. Fontt EO, De Baetselier P, Heirman C, Thielemans K, Lucas R, Vray B (1998) Effects of granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha on Trypanosoma cruzi trypomastigotes. Infect Immun 66(6):2722–2727PubMedCentralGoogle Scholar
  27. Fontt OE, Beschin A, Van Dijck E, Vercruysse V, Bilej M, Lucas R, De Baetselier P, Vray B (2002) Trypanosoma cruzi is lysed by coelomic cytolytic factor-1, an invertebrate analogue of tumor necrosis factor, and induces phenoloxidase activity in the coelomic fluid of Eisenia foetida foetida. Dev Comp Immunol 26(1):27–34CrossRefGoogle Scholar
  28. Glazer L, Roth Z, Weil S, Aflalo ED, Khalaila I, Sagi A (2015) Proteomic analysis of the crayfish gastrolith chitinous extracellular matrix reveals putative protein complexes and a central role for GAP 65. J Proteome 128:333–343CrossRefGoogle Scholar
  29. Gonzalez M, Gueguen Y, Destoumieux-Garzon D, Romestand B, Fievet J, Pugniere M, Roquet F, Escoubas JM, Vandenbulcke F, Levy O, Saune L, Bulet P, Bachere E (2007) Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI. Proc Natl Acad Sci U S A 104(45):17759–17764CrossRefGoogle Scholar
  30. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA, Ferrandon D, Royet J (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416(6881):640–644CrossRefGoogle Scholar
  31. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300(1):349–365CrossRefGoogle Scholar
  32. Hostetter R, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9:384–392CrossRefGoogle Scholar
  33. Imler JL, Hoffmann JA (2002) Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr Top Microbiol Immunol 270:63–79PubMedGoogle Scholar
  34. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13CrossRefGoogle Scholar
  35. Janeway CA (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13(1):11–16CrossRefGoogle Scholar
  36. Keilin ND (1925) Parasitic autotomy of the host as a mode of liberation of coelomic parasites from the body of the earthworm. Parasitology 17:170–172CrossRefGoogle Scholar
  37. Kim YS, Han SJ, Ryu JH, Choi KH, Hong YS, Chung YH, Perrot S, Raibaud A, Brey PT, Lee WJ (2000) Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. J Biol Chem 275(3):2071–2079CrossRefGoogle Scholar
  38. Kozhemyako VB, Rebrikov DV, Lukyanov SA, Bogdanova EA, Marin A, Mazur AK, Kovalchuk SN, Agafonova EV, Sova VV, Elyakova LA, Rasskazov VA (2004) Molecular cloning and characterization of an endo-1,3-beta-D-glucanase from the mollusk Spisula sachalinensis. Comp Biochem Physiol B Biochem Mol Biol 137(2):169–178CrossRefGoogle Scholar
  39. Lee WJ, Lee JD, Kravchenko VV, Ulevitch RJ, Brey PT (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 93(15):7888–7893CrossRefGoogle Scholar
  40. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983CrossRefGoogle Scholar
  41. Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4(5):478–484CrossRefGoogle Scholar
  42. Lucas R, Magez S, De Leys R, Fransen L, Scheerlinck JP, Rampelberg M, Sablon E, De Baetselier P (1994) Mapping the lectin-like activity of tumor necrosis factor. Science 263(5148):814–817CrossRefGoogle Scholar
  43. Ma C, Kanost MR (2000) A beta1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade. J Biol Chem 275(11):7505–7514CrossRefGoogle Scholar
  44. Magez S, Geuskens M, Beschin A, del Favero H, Verschueren H, Lucas R, Pays E, de Baetselier P (1997) Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137(3):715–727CrossRefGoogle Scholar
  45. Mendez-Fernandez L, Martinez-Madrid M, Rodriguez P (2013) Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Muller) based on lethal and sublethal effects. Ecotoxicology 22(10):1445–1460CrossRefGoogle Scholar
  46. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801CrossRefGoogle Scholar
  47. Ochiai M, Ashida M (2000) A pattern-recognition protein for beta-1,3-glucan. The binding domain and the cDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J Biol Chem 275(7):4995–5002CrossRefGoogle Scholar
  48. Paris-Palacios S, Mosleh YY, Almohamad M, Delahaut L, Conrad A, Arnoult F, Biagianti-Risbourg S (2010) Toxic effects and bioaccumulation of the herbicide isoproturon in Tubifex tubifex (Oligocheate, Tubificidae): a study of significance of autotomy and its utility as a biomarker. Aquat Toxicol 98(1):8–14CrossRefGoogle Scholar
  49. Parry MJ (1978) Survival of body wall autografts, allografts and xenografts in the earthworm Eisenia foetida. J Invert Pathol 31:383–388CrossRefGoogle Scholar
  50. Pauchet Y, Freitak D, Heidel-Fischer HM, Heckel DG, Vogel H (2009) Immunity or digestion: glucanase activity in a glucan-binding protein family from Lepidoptera. J Biol Chem 284(4):2214–2224CrossRefGoogle Scholar
  51. Prochazkova P, Silerova M, Stijlemans B, Dieu M, Halada P, Joskova R, Beschin A, De Baetselier P, Bilej M (2006) Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. J Comp Physiol B 176(6):581–587CrossRefGoogle Scholar
  52. Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW (2006) Genomic insights into the immune system of the sea urchin. Science 314(5801):952–956CrossRefGoogle Scholar
  53. Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:183–349CrossRefGoogle Scholar
  54. Rodet F, Tasiemski A, Boidin-Wichlacz C, Van Camp C, Vuillaume C, Slomianny C, Salzet M (2015) Hm-MyD88 and Hm-SARM: two key regulators of the neuroimmune system and neural repair in the medicinal leech. Sci Rep 5:9624CrossRefGoogle Scholar
  55. Schikorski D, Cuvillier-Hot V, Boidin-Wichlacz C, Slomianny C, Salzet M, Tasiemski A (2009) Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model. J Immunol 183(11):7119–7128CrossRefGoogle Scholar
  56. Seki N, Muta T, Oda T, Iwaki D, Kuma K, Miyata T, Iwanaga S (1994) Horseshoe crab (1,3)-beta-D-glucan-sensitive coagulation factor G. A serine protease zymogen heterodimer with similarities to beta-glucan-binding proteins. J Biol Chem 269(2):1370–1374PubMedGoogle Scholar
  57. Seymour J, Nappi AJ, Valembois P (1992) Characterization of a phenoloxidase of the coelomic fluid of the earthworm Eisenia fetida andrei. Anim Biol 2:1–6Google Scholar
  58. Shin SW, Park SS, Park DS, Kim MG, Kim SC, Brey PT, Park HY (1998) Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning. Insect Biochem Mol Biol 28(11):827–837CrossRefGoogle Scholar
  59. Silerova M, Prochazkova P, Joskova R, Josens G, Beschin A, De Baetselier P, Bilej M (2006) Comparative study of the CCF-like pattern recognition protein in different Lumbricid species. Dev Comp Immunol 30(9):765–771CrossRefGoogle Scholar
  60. Skanta F, Roubalova R, Dvorak J, Prochazkova P, Bilej M (2013) Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol 41(4):694–702CrossRefGoogle Scholar
  61. Skanta F, Prochazkova P, Roubalova R, Dvorak J, Bilej M (2016) LBP/BPI homologue in Eisenia andrei earthworms. Dev Comp Immunol 54(1):1–6CrossRefGoogle Scholar
  62. Söderhäll K, Cerenius L (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10(1):23–28CrossRefGoogle Scholar
  63. Söderhäll K, Cerenius L, Johansson MW (1994) The prophenoloxidase activating system and its role in invertebrate defence. Ann N Y Acad Sci 712:155–161CrossRefGoogle Scholar
  64. Tasiemski A, Schikorski D, Le Marrec-Croq F, Camp CPV, Boidin-Wichlacz U, Sautiere PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively the marine annelid, expressed in the NK cells-like of Nereis diversicolor. Dev Comp Immunol 31(8):749–762CrossRefGoogle Scholar
  65. Valembois P (1971) Etude ultrastructurale des coelomocytes du lombricien Eisenia foetida Sav. Bull Soc Zool Fr 96:59–72Google Scholar
  66. Valembois P, Lassegues M, Roch P (1992) Formation of brown bodies in the coelomic cavity of the earthworm Eisenia fetida andrei and attendant changes in shape and adhesive capacity of constitutive cells. Dev Comp Immunol 16(2–3):95–101CrossRefGoogle Scholar
  67. Valembois P, Seymour J, Lassegues M (1994) Evidence of lipofuscin and melanin in the brown body of the earthworm Eisenia fetida andrei. Cell Tissue Res 277(1):183–188CrossRefGoogle Scholar
  68. Yamamoto M, Aono R, Horikoshi K (1993) Structure of the 87-kDa beta-1,3-glucanase gene of Bacillus circulans IAM1165 and properties of the enzyme accumulated in the periplasm of Escherichia coli carrying the gene. Biosci Biotechnol Biochem 57(9):1518–1525CrossRefGoogle Scholar
  69. Zheng LP, Hou L, Chang AK, Yu MA, Ma JA, Li XA, Zou XY (2011) Expression pattern of a Gram-negative bacteria-binding protein in early embryonic development of Artemia sinica and after bacterial challenge. Dev Comp Immunol 35(1):35–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations