Nanoparticles-Based Systems for Osteochondral Tissue Engineering

  • Isabel Oliveira
  • Sílvia Vieira
  • J. Miguel OliveiraEmail author
  • Rui L. Reis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


Osteochondral lesions represent one of the major causes of disabilities in the world. These defects are due to degenerative or inflammatory arthritis, but both affect the articular cartilage and the underlying subchondral bone. Defects from trauma or degenerative pathology frequently cause severe pain, joint deformity, and loss of joint motion. Osteochondral defects are a significant challenge in orthopedic surgery, due to the cartilage complexity and unique structure, as well as its exposure to high pressure and motion. Although there are treatments routinely performed in the clinical practice, they present several limitations. Tissue engineering can be a suitable alternative for osteochondral defects since bone and cartilage engineering had experienced a notable advance over the years. Allied with nanotechnology, osteochondral tissue engineering (OCTE) can be leveled up, being possible to create advanced structures similar to the OC tissue. In this chapter, the current strategies using nanoparticles-based systems are overviewed. The results of the studies herein considered confirm that advanced nanomaterials will undoubtedly play a crucial role in the design of strategies for treatment of osteochondral defects in the near future.


Nanoparticles Articular cartilage Subchondral bone Osteochondral defects 


  1. 1.
    Castro NJ, Hacking SA, Zhang LG (2012) Recent progress in interfacial tissue engineering approaches for osteochondral defects. Ann Biomed Eng 40(8):1628–1640CrossRefPubMedGoogle Scholar
  2. 2.
    Khan MS, Vishakante GD, Siddaramaiah H (2013) Gold nanoparticles: a paradigm shift in biomedical applications. Adv Colloid Interface Sci 199–200:44–58. CrossRefPubMedGoogle Scholar
  3. 3.
    Panseri S, Russo A, Cunha C et al (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg SportTraumatol Arthrosc 20(6):1182–1191CrossRefGoogle Scholar
  4. 4.
    Amini AR, Adams DJ, Laurencin CT, Nukavarapu SP (2012) Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Tissue Eng Part A 18:1376. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nukavarapu SP, Amini AR (2011) Optimal scaffold design and effective progenitor cell identification for the regeneration of vascularized bone. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA.Google Scholar
  6. 6.
    Nejadnik H, Daldrup-Link HE (2012) Engineering stem cells for treatment of osteochondral defects. Skeletal Radiol 41:1CrossRefPubMedGoogle Scholar
  7. 7.
    Martin I, Miot S, Barbero A et al (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765CrossRefPubMedGoogle Scholar
  8. 8.
    Makris EA, Gomoll AH, Malizos KN et al (2014) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11:21. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Camarero-Espinosa S, Cooper-White J (2017) Tailoring biomaterial scaffolds for osteochondral repair. Int J Pharm 523:476. CrossRefPubMedGoogle Scholar
  10. 10.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31:706. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Degoricija L, Bansal PN, Söntjens SHM et al (2008) Hydrogels for osteochondral repair based on photocrosslinkable carbamate dendrimers. Biomacromolecules 9:2863. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nicolas J, Mura S, Brambilla D et al (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235. CrossRefPubMedGoogle Scholar
  13. 13.
    Vieira S, Vial S, Reis RL, Oliveira JM (2017) Nanoparticles for bone tissue engineering. Biotechnol Prog 33:590–611. CrossRefPubMedGoogle Scholar
  14. 14.
    Alves Cardoso D, Jansen JA, Leeuwenburgh SCG (2012) Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res Part B Appl Biomater 100B:2316–2326. CrossRefGoogle Scholar
  15. 15.
    Yan L-P, Silva-Correia J, Correia C et al (2012) Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine 8:359–378. CrossRefPubMedGoogle Scholar
  16. 16.
    Amadori S, Torricelli P, Panzavolta S et al (2015) Multi-layered scaffolds for osteochondral tissue engineering: in vitro response of co-cultured human mesenchymal stem cells. Macromol Biosci 15:1535–1545. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gaharwar AK, Dammu SA, Canter JM et al (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650. CrossRefPubMedGoogle Scholar
  18. 18.
    Nowicki MA, Castro NJ, Plesniak MW, Zhang LG (2016) 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology 27:414001. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169. CrossRefPubMedGoogle Scholar
  20. 20.
    Verma S, Domb AJ, Kumar N (2011) Nanomaterials for regenerative medicine. Nanomedicine (Lond) 6:157–181. CrossRefGoogle Scholar
  21. 21.
    Mellor LF, Mohiti-Asli M, Williams J et al (2015) Extracellular calcium modulates Chondrogenic and osteogenic differentiation of human adipose-derived stem cells: A novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng Part A 21:2323. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fan J, Tan Y, Jie L et al (2013) Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells. Stem Cell Res Ther 4:44. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lalande C, Miraux S, Derkaoui SM et al (2011) Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Eur Cell Mater 21:341–354CrossRefPubMedGoogle Scholar
  24. 24.
    Meir R, Motiei M, Popovtzer R (2014) Gold nanoparticles for in vivo cell tracking. Nanomedicine 9:2059–2069. CrossRefPubMedGoogle Scholar
  25. 25.
    Shen Y, Shao Y, He H et al (2013) Gadolinium3+−doped mesoporous silica nanoparticles as a potential magnetic resonance tracer for monitoring the migration of stem cells in vivo. Int J Nanomedicine 8:119–127. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shin T-H, Choi Y, Kim S, Cheon J (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44:4501. CrossRefPubMedGoogle Scholar
  28. 28.
    Colombo M, Carregal-Romero S, Casula MF et al (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306CrossRefPubMedGoogle Scholar
  29. 29.
    Pandey RK, Prajapati VK (2018) Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 107(Pt A):1278–1293CrossRefPubMedGoogle Scholar
  30. 30.
    Su JY, Chen SH, Chen YP, Chen WC (2017) Evaluation of magnetic nanoparticle-labeled chondrocytes cultivated on a type II collagen–chitosan/poly(lactic-co-glycolic) acid biphasic scaffold. Int J Mol Sci 18. CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Monteiro N, Martins A, Reis RL, Neves NM (2015) Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 1:109. CrossRefGoogle Scholar
  32. 32.
    Zhang W, Yang G, Wang X et al (2017) Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration. Adv Mater 29:1703795. CrossRefGoogle Scholar
  33. 33.
    Lee Y-H, Wu H-C, Yeh C-W et al (2017) Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater 63:210–226. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61:1033–1042. CrossRefPubMedGoogle Scholar
  35. 35.
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. CrossRefGoogle Scholar
  36. 36.
    Wang C, Hou W, Guo X et al (2017) Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng C 79:507. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Isabel Oliveira
    • 1
    • 2
  • Sílvia Vieira
    • 1
    • 2
  • J. Miguel Oliveira
    • 1
    • 2
    • 3
    Email author
  • Rui L. Reis
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group – Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of MinhoBarco/GuimarãesPortugal

Personalised recommendations