Skip to main content

Hyaluronic Acid

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1059)

Abstract

In recent times, the field of tissue engineering and regenerative medicine (TERM) has considerably increased the extent of therapeutic strategies for clinical application in orthopedics. However, TERM approaches have its rules and requirements, in the respect of the biologic response of each tissue and bioactive agents which need to be considered, respected, and subject of ongoing studies. Different medical devices/products have been prematurely available on the market and used in clinics with limited success. However, other therapeutics, when used in a serious and evidence-based approach, have achieved considerable success, considering the respect for solid expectations from doctors and patients (when properly informed).

Orthobiologics has appeared as a recent technological trend in orthopedics. This includes the improvement or regeneration of different musculoskeletal tissues by means of using biomaterials (e.g., hyaluronic acid), stem cells, and growth factors (e.g., platelet-rich plasma). The potential symbiotic relationship between biologic therapies and surgery makes these strategies suitable to be used in one single intervention.

However, herein, the recent clinical studies using hyaluronic acid (HA) in the treatment of orthopedic conditions will mainly be overviewed (e.g., osteochondral lesions, tendinopathies). The possibilities to combine different orthobiologic agents as TERM clinical strategies for treatment of orthopedic problems will also be briefly discussed.

Keywords

  • Osteochondral lesions
  • Tendinopathies
  • Orthobiologics
  • Hyaluronic acid
  • Stem cells
  • Platelet-rich plasma
  • Growth factors
  • Tissue engineering and regenerative medicine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76735-2_6
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76735-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4

References

  1. Xing D, Wang B, Liu Q, Ke Y, Xu Y, Li Z, Lin J (2016) Intra-articular hyaluronic acid in treating knee osteoarthritis: a PRISMA-compliant systematic review of overlapping meta-analysis. Sci Rep 6:32790. https://doi.org/10.1038/srep32790

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  2. Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44(5):531–541. https://doi.org/10.1016/j.semarthrit.2014.10.012

    CrossRef  PubMed  Google Scholar 

  3. Hunter DJ (2009) Risk stratification for knee osteoarthritis progression: a narrative review. Osteoarthr Cartil/OARS Osteoarthr Res Soc 17(11):1402–1407. https://doi.org/10.1016/j.joca.2009.04.014

    CrossRef  CAS  Google Scholar 

  4. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ (2010) Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(5):570–580. https://doi.org/10.1007/s00167-010-1064-x

    CrossRef  Google Scholar 

  5. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    CrossRef  CAS  PubMed  Google Scholar 

  6. Hunziker EB (2000) Articular cartilage repair: problems and perspectives. Biorheology 37(1-2):163–164

    PubMed  CAS  Google Scholar 

  7. Pacifici M, Koyama E, Iwamoto M, Gentili C (2000) Development of articular cartilage: what do we know about it and how may it occur? Connect Tissue Res 41(3):175–184

    CrossRef  CAS  PubMed  Google Scholar 

  8. Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthr Cartil/OARS Osteoarthr Res Soc 13(2):93–103. https://doi.org/10.1016/j.joca.2004.11.006

    CrossRef  CAS  Google Scholar 

  9. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (2000) Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med 133(5):321–328

    CrossRef  CAS  PubMed  Google Scholar 

  10. de Vos RJ, van PLJ V, Moen MH, Weir A, Tol JL, Maffulli N (2010) Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull 95(1):63–77. https://doi.org/10.1093/bmb/ldq006

    CrossRef  PubMed  CAS  Google Scholar 

  11. van Sterkenburg MN, van Dijk CN (2011) Injection treatment for chronic midportion Achilles tendinopathy: do we need that many alternatives? Knee Surg Sports Traumatol Arthrosc Off J ESSKA 19(4):513–515. https://doi.org/10.1007/s00167-011-1415-2

    CrossRef  Google Scholar 

  12. Snedeker JG, Foolen J (2017) Tendon injury and repair - a perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 63:18–36. https://doi.org/10.1016/j.actbio.2017.08.032

    CrossRef  PubMed  Google Scholar 

  13. Weinraub GM (2005) Orthobiologics: a survey of materials and techniques. Clin Podiatr Med Surg 22(4):509–519., v. https://doi.org/10.1016/j.cpm.2005.08.003

    CrossRef  PubMed  Google Scholar 

  14. Correia SI, Pereira H, Silva-Correia J, Van Dijk CN, Espregueira-Mendes J, Oliveira JM, Reis RL (2014) Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface R Soc 11(92):20130784. https://doi.org/10.1098/rsif.2013.0784

    CrossRef  CAS  Google Scholar 

  15. de Mos M, van der Windt AE, Jahr H, van Schie HT, Weinans H, Verhaar JA, van Osch GJ (2008) Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 36(6):1171–1178. https://doi.org/10.1177/0363546508314430

    CrossRef  PubMed  Google Scholar 

  16. DeChellis DM, Cortazzo MH (2011) Regenerative medicine in the field of pain medicine: prolotherapy, platelet-rich plasma therapy, and stem cell therapy—theory and evidence. Tech Reg Anesth Pain Manag 15:74–80

    CrossRef  Google Scholar 

  17. Evans CH (2013) Platelet-rich plasma a la carte: commentary on an article by Satoshi Terada, MD, et al.: “use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury”. J Bone Joint Surg Am 95(11):e801–e802. https://doi.org/10.2106/JBJS.M.00485

    CrossRef  PubMed  Google Scholar 

  18. Luyten FP, Vanlauwe J (2012) Tissue engineering approaches for osteoarthritis. Bone 51(2):289–296. https://doi.org/10.1016/j.bone.2011.10.007

    CrossRef  PubMed  CAS  Google Scholar 

  19. Martel-Pelletier J, Wildi LM, Pelletier JP (2012) Future therapeutics for osteoarthritis. Bone 51(2):297–311. https://doi.org/10.1016/j.bone.2011.10.008

    CrossRef  PubMed  CAS  Google Scholar 

  20. Qi Y, Feng G, Yan W (2012) Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep 39(5):5683–5689. https://doi.org/10.1007/s11033-011-1376-z

    CrossRef  PubMed  CAS  Google Scholar 

  21. Nordsletten L (2006) Recent developments in the use of bone morphogenetic protein in orthopaedic trauma surgery. Curr Med Res Opin 22(s1):S13–S17. https://doi.org/10.1185/030079906X80585

    CrossRef  PubMed  CAS  Google Scholar 

  22. Myers KR (2013) Trends in biological joint resurfacing. Bone Joint Res 2(9):193–199. https://doi.org/10.1302/2046-3758.29.2000189

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pereira H, Ripoll L, Oliveira JM, Reis RL, Espregueira-Mendes J, van Dijk C (2016) A Engenharia de tecidos nas lesões do Desporto. Traumatologia Desportiva. LIDEL, Lisboa

    Google Scholar 

  24. Di Giacomo G, De Gasperis N (2015) The role of hyaluronic acid in patients affected by glenohumeral osteoarthritis. J Biol Regul Homeost Agents 29(4):945–951

    PubMed  Google Scholar 

  25. Flores C, Balius R, Alvarez G, Buil MA, Varela L, Cano C, Casariego J (2017) Efficacy and tolerability of Peritendinous hyaluronic acid in patients with supraspinatus Tendinopathy: a multicenter, randomized, controlled trial. Sports Med Open 3(1):22. https://doi.org/10.1186/s40798-017-0089-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Gigante A, Callegari L (2011) The role of intra-articular hyaluronan (Sinovial) in the treatment of osteoarthritis. Rheumatol Int 31(4):427–444. https://doi.org/10.1007/s00296-010-1660-6

    CrossRef  PubMed  Google Scholar 

  27. Van Den Bekerom MP, Mylle G, Rys B, Mulier M (2006) Viscosupplementation in symptomatic severe hip osteoarthritis: a review of the literature and report on 60 patients. Acta Orthop Belg 72(5):560–568

    Google Scholar 

  28. Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 18(2):238–246. https://doi.org/10.1007/s00167-009-0942-6

    CrossRef  Google Scholar 

  29. Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Veterinarni Medicina 53(8):397–411

    CrossRef  CAS  Google Scholar 

  30. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92(2):1262–1279. https://doi.org/10.1016/j.carbpol.2012.10.028

    CrossRef  CAS  PubMed  Google Scholar 

  31. Witteveen AG, Hofstad CJ, Kerkhoffs GM (2015) Hyaluronic acid and other conservative treatment options for osteoarthritis of the ankle. Cochrane Database Syst Rev 10:CD010643. https://doi.org/10.1002/14651858.CD010643.pub2

    CrossRef  Google Scholar 

  32. Bonnet F, Dunham DG, Hardingham TE (1979) Structure and interactions of cartilage proteoglycan binding region and link protein. Biochem J 228:77–85

    CrossRef  Google Scholar 

  33. McArthur BA, Dy CJ, Fabricant PD, Valle AG (2012) Long term safety, efficacy, and patient acceptability of hyaluronic acid injection in patients with painful osteoarthritis of the knee. Patient Prefer Adherence 6:905–910. https://doi.org/10.2147/ppa.s27783

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715. https://doi.org/10.1016/j.ejcb.2006.05.009

    CrossRef  CAS  PubMed  Google Scholar 

  35. Stern R, Kogan G, Jedrzejas MJ, Šoltés L (2007) The many ways to cleave hyaluronan. Biotechnol Adv 25(6):537–557. https://doi.org/10.1016/j.biotechadv.2007.07.001

    CrossRef  CAS  PubMed  Google Scholar 

  36. Toole BP (2001) Hyaluronan in morphogenesis. Semin Cell Dev Biol 12(2):79–87. https://doi.org/10.1006/scdb.2000.0244

    CrossRef  CAS  PubMed  Google Scholar 

  37. Strauss EJ, Hart JA, Miller MD, Altman RD, Rosen JE (2009) Hyaluronic acid Viscosupplementation and osteoarthritis: current uses and future directions. Am J Sports Med 37(8):1636–1644. https://doi.org/10.1177/0363546508326984

    CrossRef  PubMed  Google Scholar 

  38. Toole BP (2004) Hyaluronan: From extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539. https://doi.org/10.1038/nrc1391

    CrossRef  PubMed  CAS  Google Scholar 

  39. Bollyky P, Bogdani M, Bollyky J, Hull R, Wight T (2012) The role of Hyaluronan and the extracellular matrix in islet inflammation and immune regulation. Curr Diab Rep 12(5):471–480. https://doi.org/10.1007/s11892-012-0297-0

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  40. Preston M, Sherman L (2011) Neural stem cell niches: critical roles for the hyaluronan-based matrix in neural stem cell proliferation and differentiation. Front Biosci 3:1165–1179

    CrossRef  Google Scholar 

  41. Balazs EA, Denlinger JL (1993) Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl 39:3–9

    PubMed  CAS  Google Scholar 

  42. Moreland LW (2003) Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther 5(2):54–67

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lynen N, De Vroey T, Spiegel I, Van Ongeval F, Hendrickx NJ, Stassijns G (2017) Comparison of Peritendinous Hyaluronan injections versus extracorporeal shock wave therapy in the treatment of painful Achilles’ Tendinopathy: a randomized clinical efficacy and safety study. Arch Phys Med Rehabil 98(1):64–71. https://doi.org/10.1016/j.apmr.2016.08.470

    CrossRef  PubMed  Google Scholar 

  44. Araujo JP, Silva L, Andrade R, Pacos M, Moreira H, Migueis N, Pereira R, Sarmento A, Pereira H, Loureiro N, Espregueira-Mendes J (2016) Pain reduction and improvement of function following ultrasound-guided intra-articular injections of triamcinolone hexacetonide and hyaluronic acid in hip osteoarthritis. J Biol Regul Homeost Agents 30(4 Suppl 1):51–62

    PubMed  CAS  Google Scholar 

  45. Bannuru RR, Natov NS, Dasi UR, Schmid CH, McAlindon TE (2011) Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis--meta-analysis. Osteoarthr Cartil/OARS Osteoarthr Res Soc 19(6):611–619. https://doi.org/10.1016/j.joca.2010.09.014

    CrossRef  CAS  Google Scholar 

  46. Wang CT, Lin J, Chang CJ, Lin YT, Hou SM (2004) Therapeutic effects of hyaluronic acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials. J Bone Joint Surg Am 86-a(3):538–545

    CrossRef  Google Scholar 

  47. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G (2006) Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev (2):Cd005321. https://doi.org/10.1002/14651858.CD005321.pub2

  48. Karatosun V, Unver B, Ozden A, Ozay Z, Gunal I (2008) Intra-articular hyaluronic acid compared to exercise therapy in osteoarthritis of the ankle. A prospective randomized trial with long-term follow-up. Clin Exp Rheumatol 26(2):288–294

    PubMed  CAS  Google Scholar 

  49. Migliore A, Bizzi E, Massafra U, Vacca F, Alimonti A, Iannessi F, Tormenta S (2009) Viscosupplementation: a suitable option for hip osteoarthritis in young adults. Eur Rev Med Pharmacol Sci 13(6):465–472

    PubMed  CAS  Google Scholar 

  50. Monfort J, Rotes-Sala D, Segales N, Montanes FJ, Orellana C, Llorente-Onaindia J, Mojal S, Padro I, Benito P (2015) Comparative efficacy of intra-articular hyaluronic acid and corticoid injections in osteoarthritis of the first carpometacarpal joint: results of a 6-month single-masked randomized study. Joint Bone Spine 82(2):116–121. https://doi.org/10.1016/j.jbspin.2014.08.008

    CrossRef  PubMed  CAS  Google Scholar 

  51. Porcellini G, Merolla G, Giordan N, Paladini P, Burini A, Cesari E, Castagna A (2015) Intra-articular glenohumeral injections of HYADD(R)4-G for the treatment of painful shoulder osteoarthritis: a prospective multicenter, open-label trial. Joints 3(3):116–121. https://doi.org/10.11138/jts/2015.3.3.116

    CrossRef  PubMed  Google Scholar 

  52. Legre-Boyer V (2015) Viscosupplementation: techniques, indications, results. Orthop Trauma Surg Res OTSR 101(1s):S101–s108. https://doi.org/10.1016/j.otsr.2014.07.027

    CrossRef  CAS  Google Scholar 

  53. Braithwaite GJ, Daley MJ, Toledo-Velasquez D (2016) Rheological and molecular weight comparisons of approved hyaluronic acid products - preliminary standards for establishing class III medical device equivalence. J Biomater Sci Polym Ed 27(3):235–246. https://doi.org/10.1080/09205063.2015.1119035

    CrossRef  PubMed  CAS  Google Scholar 

  54. Ayhan E, Kesmezacar H, Akgun I (2014) Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop 5(3):351–361. https://doi.org/10.5312/wjo.v5.i3.351

    CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S (2013) One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg 97(2):145–151. https://doi.org/10.1007/s12306-013-0242-7

    CrossRef  PubMed  Google Scholar 

  56. Doral MN, Bilge O, Batmaz G, Donmez G, Turhan E, Demirel M, Atay OA, Uzumcugil A, Atesok K, Kaya D (2012) Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(7):1398–1403. https://doi.org/10.1007/s00167-011-1856-7

    CrossRef  CAS  Google Scholar 

  57. Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F (2013) One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med 41(3):511–518. https://doi.org/10.1177/0363546512467622

    CrossRef  PubMed  Google Scholar 

  58. Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A, Fornasari PM, Giannini S, Marcacci M (2011) Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 27(11):1490–1501. https://doi.org/10.1016/j.arthro.2011.05.011

    CrossRef  Google Scholar 

  59. Mason LW, Wilson-Jones N, Williams P (2014) The use of a cell-free chondroinductive implant in a child with massive cartilage loss of the talus after an open fracture dislocation of the ankle: a case report. J Pediatr Orthop 34(8):e58–e62. https://doi.org/10.1097/bpo.0000000000000198

    CrossRef  PubMed  Google Scholar 

  60. Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH (2013) Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 29(12):2020–2028. https://doi.org/10.1016/j.arthro.2013.09.074

    CrossRef  Google Scholar 

  61. Colen S, Geervliet P, Haverkamp D, Van Den Bekerom MP (2014) Intra-articular infiltration therapy for patients with glenohumeral osteoarthritis: a systematic review of the literature. Int J Shoulder Surg 8(4):114–121. https://doi.org/10.4103/0973-6042.145252

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Trellu S, Dadoun S, Berenbaum F, Fautrel B, Gossec L (2015) Intra-articular injections in thumb osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Joint Bone Spine 82(5):315–319. https://doi.org/10.1016/j.jbspin.2015.02.002

    CrossRef  PubMed  Google Scholar 

  63. Abat F, Alfredson H, Cucchiarini M, Madry H, Marmotti A, Mouton C, Oliveira JM, Pereira H, Peretti GM, Romero-Rodriguez D, Spang C, Stephen J, van Bergen CJA, de Girolamo L (2017) Current trends in tendinopathy: consensus of the ESSKA basic science committee. Part I: biology, biomechanics, anatomy and an exercise-based approach. J Exp Orthop 4(1):18. https://doi.org/10.1186/s40634-017-0092-6

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  64. Frizziero A, Vittadini F, Barazzuol M, Gasparre G, Finotti P, Meneghini A, Maffulli N, Masiero S (2017) Extracorporeal shockwaves therapy versus hyaluronic acid injection for the treatment of painful non-calcific rotator cuff tendinopathies: preliminary results. J Sports Med Phys Fitness 57(9):1162–1168. https://doi.org/10.23736/S0022-4707.16.06408-2

    CrossRef  PubMed  Google Scholar 

  65. Kumai T, Muneta T, Tsuchiya A, Shiraishi M, Ishizaki Y, Sugimoto K, Samoto N, Isomoto S, Tanaka Y, Takakura Y (2014) The short-term effect after a single injection of high-molecular-weight hyaluronic acid in patients with enthesopathies (lateral epicondylitis, patellar tendinopathy, insertional Achilles tendinopathy, and plantar fasciitis): a preliminary study. J Orthop Sci 19(4):603–611. https://doi.org/10.1007/s00776-014-0579-2

    CrossRef  PubMed  CAS  Google Scholar 

  66. Wu PT, Jou IM, Kuo LC, Su FC (2016) Intratendinous injection of hyaluronate induces acute inflammation: a possible detrimental effect. PLoS One 11(5):e0155424. https://doi.org/10.1371/journal.pone.0155424

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  67. Antunes JC, Oliveira JM, Reis RL, Soria JM, Gomez-Ribelles JL, Mano JF (2010) Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. J Biomed Mater Res A 94(3):856–869. https://doi.org/10.1002/jbm.a.32753

    CrossRef  PubMed  CAS  Google Scholar 

  68. Forriol F, Longo UG, Duart J, Ripalda P, Vaquero J, Loppini M, Romeo G, Campi S, Khan WS, Muda AO, Denaro V (2015) VEGF, BMP-7, Matrigel(TM), hyaluronic acid, in vitro cultured chondrocytes and trephination for healing of the avascular portion of the meniscus. An experimental study in sheep. Curr Stem Cell Res Ther 10(1):69–76

    CrossRef  CAS  PubMed  Google Scholar 

  69. Kon E, Filardo G, Robinson D, Eisman JA, Levy A, Zaslav K, Shani J, Altschuler N (2013) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc. [Epub ahead of print]:1–13. https://doi.org/10.1007/s00167-013-2467-2

  70. Anitua E, Sanchez M, De la Fuente M, Zalduendo MM, Orive G (2012) Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(9):1657–1665. https://doi.org/10.1007/s00167-011-1697-4

    CrossRef  CAS  Google Scholar 

  71. Chen WH, Lo WC, Hsu WC, Wei HJ, Liu HY, Lee CH, Tina Chen SY, Shieh YH, Williams DF, Deng WP (2014) Synergistic anabolic actions of hyaluronic acid and platelet-rich plasma on cartilage regeneration in osteoarthritis therapy. Biomaterials 35(36):9599–9607. https://doi.org/10.1016/j.biomaterials.2014.07.058

    CrossRef  PubMed  CAS  Google Scholar 

  72. Srinivasan PP, McCoy SY, Jha AK, Yang W, Jia X, Farach-Carson MC, Kirn-Safran CB (2012) Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. Biomed Mater 7(2):024109. https://doi.org/10.1088/1748-6041/7/2/024109

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sanchez M, Azofra J, Anitua E, Andia I, Padilla S, Santisteban J, Mujika I (2003) Plasma rich in growth factors to treat an articular cartilage avulsion: a case report. Med Sci Sports Exerc 35(10):1648–1652. https://doi.org/10.1249/01.MSS.0000089344.44434.50

    CrossRef  PubMed  Google Scholar 

  74. Tsaryk R, Gloria A, Russo T, Anspach L, De Santis R, Ghanaati S, Unger RE, Ambrosio L, Kirkpatrick CJ (2015) Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration. Acta Biomater 20:10–21. https://doi.org/10.1016/j.actbio.2015.03.041

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélder Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, H. et al. (2018). Hyaluronic Acid. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_6

Download citation