Emerging Concepts in Treating Cartilage, Osteochondral Defects, and Osteoarthritis of the Knee and Ankle

  • Hélder Pereira
  • Ibrahim Fatih Cengiz
  • Carlos Vilela
  • Pedro L. Ripoll
  • João Espregueira-Mendes
  • J. Miguel Oliveira
  • Rui L. Reis
  • C. Niek van Dijk
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


The management and treatment of cartilage lesions, osteochondral defects, and osteoarthritis remain a challenge in orthopedics. Moreover, these entities have different behaviors in different joints, such as the knee and the ankle, which have inherent differences in function, biology, and biomechanics. There has been a huge development on the conservative treatment (new technologies including orthobiologics) as well as on the surgical approach. Some surgical development upraises from technical improvements including advanced arthroscopic techniques but also from increased knowledge arriving from basic science research and tissue engineering and regenerative medicine approaches. This work addresses the state of the art concerning basic science comparing the knee and ankle as well as current options for treatment. Furthermore, the most promising research developments promising new options for the future are discussed.


Surgery Autologous osteochondral transplantation Bone marrow stimulation Congruency Alignment Tissue engineering and regenerative medicine 


  1. 1.
    van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJ (2010) Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc 18(5):570–580.  https://doi.org/10.1007/s00167-010-1064-x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hunter DJ (2009) Risk stratification for knee osteoarthritis progression: a narrative review. Osteoarthritis Cartilage 17(11):1402–1407.  https://doi.org/10.1016/j.joca.2009.04.014 CrossRefPubMedGoogle Scholar
  3. 3.
    Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (2000) Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med 133(5):321–328Google Scholar
  4. 4.
    Andrade R, Vasta S, Papalia R, Pereira H, Oliveira JM, Reis RL, Espregueira-Mendes J (2016) Prevalence of articular cartilage lesions and surgical clinical outcomes in football (soccer) players’ knees: a systematic review. Arthroscopy 32(7):1466–1477Google Scholar
  5. 5.
    Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH (2010) Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc 42(10):1795–1801PubMedGoogle Scholar
  6. 6.
    Årøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG, Engebretsen L (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32(1):211–215PubMedGoogle Scholar
  7. 7.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460Google Scholar
  8. 8.
    Mithoefer K, Peterson L, Saris D, Mandelbaum B, Dvorák J (2012) Special issue on articular cartilage injury in the football (soccer) player. Cartilage 3(1 suppl):4S–5SPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mithoefer K, Steadman RJ (2012) Microfracture in football (soccer) players: a case series of professional athletes and systematic review. Osteoarthritis Cartilage 3(1 suppl):18S–24SGoogle Scholar
  10. 10.
    Huch K, Kuettner KE, Dieppe P (1997) Osteoarthritis in ankle and knee joints. Semin Arthritis Rheum 26(4):667–674PubMedGoogle Scholar
  11. 11.
    Gomoll A, Filardo G, De Girolamo L, Esprequeira-Mendes J, Marcacci M, Rodkey W, Steadman R, Zaffagnini S, Kon E (2012) Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc 20(3):450–466Google Scholar
  12. 12.
    Krych AJ, Robertson CM, Williams RJ (2012) Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 40(5):1053–1059PubMedGoogle Scholar
  13. 13.
    Mithoefer K, Della Villa S (2012) Return to sports after articular cartilage repair in the football (soccer) player. Cartilage 3(1 suppl):57S–62SPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR (2009) Return to sports participation after articular cartilage repair in the knee scientific evidence. Am J Sports Med 37(1 suppl):167S–176SGoogle Scholar
  15. 15.
    Dvorak J, Peterson L, Junge A, Chomiak J, Graf-Baumann T (2000) Incidence of football injuries and complaints in different age groups and skill-level groups. Am J Sports Med 28(5):51–57Google Scholar
  16. 16.
    Messner K, Maletius W (1996) The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop 67(2):165–168Google Scholar
  17. 17.
    Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD (2003) Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes an analysis of sex-based differences. Am J Sports Med 31(4):601–605PubMedGoogle Scholar
  18. 18.
    Tandoan RN, Mann G, Verdonk R, Doral MN (2012) Sports injuries: prevention, diagnosis, treatment and rehabilitation. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-15630-4 CrossRefGoogle Scholar
  19. 19.
    Bruce EJ, Hamby T, Jones DG (2005) Sports-related osteochondral injuries: clinical presentation, diagnosis, and treatment. Prim Care 32(1):253–276.  https://doi.org/10.1016/j.pop.2004.11.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthritis Cartilage 13(2):93–103.  https://doi.org/10.1016/j.joca.2004.11.006 CrossRefPubMedGoogle Scholar
  21. 21.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer NCAA data and review of literature. Am J Sports Med 23(6):694–701PubMedGoogle Scholar
  22. 22.
    Heijink A, Gomoll AH, Madry H, Drobnič M, Filardo G, Espregueira-Mendes J, Van Dijk CN (2012) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20(3):423–435Google Scholar
  23. 23.
    Vannini F, Spalding T, Andriolo L, Berruto M, Denti M, Espregueira-Mendes J, Menetrey J, Peretti G, Seil R, Filardo G (2016) Sport and early osteoarthritis: the role of sport in aetiology, progression and treatment of knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 24(6):1786–1796Google Scholar
  24. 24.
    Pánics G, Hangody LR, Baló E, Vásárhelyi G, Gál T, Hangody L (2012) Osteochondral autograft and mosaicplasty in the football (Soccer) athlete. Cartilage 3(1 suppl):25S–30SPubMedPubMedCentralGoogle Scholar
  25. 25.
    Steinwachs M, Engebretsen L, Brophy R (2012) Scientific evidence base for cartilage injury and repair in the athlete. Cartilage 3(1 suppl):11S–17SPubMedPubMedCentralGoogle Scholar
  26. 26.
    Drawer S, Fuller C (2001) Propensity for osteoarthritis and lower limb joint pain in retired professional soccer players. Br J Sports Med 35(6):402–408PubMedPubMedCentralGoogle Scholar
  27. 27.
    Engström B, Forssblad M, Johansson C, Tornkvist H (1990) Does a major knee injury definitely sideline an elite soccer player? Am J Sports Med 18(1):101–105PubMedGoogle Scholar
  28. 28.
    Badekas T, Takvorian M, Souras N (2013) Treatment principles for osteochondral lesions in foot and ankle. Int Orthop 37(9):1697–1706.  https://doi.org/10.1007/s00264-013-2076-1 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28(4):192–202PubMedGoogle Scholar
  30. 30.
    Cengiz IF, Oliveira JM, Ochi M, Nakamae A, Adachi N, Reis RL (2017) “Biologic” treatment for meniscal repair. In: Injuries and health problems in football. Springer, Berlin/Heidelberg, pp 679–686Google Scholar
  31. 31.
    Martel-Pelletier J, Wildi LM, Pelletier JP (2012) Future therapeutics for osteoarthritis. Bone 51(2):297–311.  https://doi.org/10.1016/j.bone.2011.10.008 CrossRefGoogle Scholar
  32. 32.
    Weinraub GM (2005) Orthobiologics: a survey of materials and techniques. Clin Podiatr Med Surg 22(4):509–519, v.  https://doi.org/10.1016/j.cpm.2005.08.003 CrossRefGoogle Scholar
  33. 33.
    Neustadt DH (2006) Intra-articular injections for osteoarthritis of the knee. Cleve Clin J Med 73(10):897–898. 901-894, 906-811PubMedGoogle Scholar
  34. 34.
    Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F, National Arthritis Data W (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58(1):26–35.  https://doi.org/10.1002/art.23176 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44(5):531–541.  https://doi.org/10.1016/j.semarthrit.2014.10.012 CrossRefGoogle Scholar
  36. 36.
    Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage 21(9):1145–1153.  https://doi.org/10.1016/j.joca.2013.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kurtz S, Ong K, Lau E, Manley M (2011) Current and projected utilization of total joint replacements. Compr Biomater 6:1–9Google Scholar
  38. 38.
    Lohmander LS (2013) Knee replacement for osteoarthritis: facts, hopes, and fears. Medicographia 35:181–188Google Scholar
  39. 39.
    Ekstrand J (2016) UEFA Elite Club Injury Study Report 2015/16.Google Scholar
  40. 40.
    Aurich M, Hofmann GO, Rolauffs B, Gras F (2014) Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study. Orthop Rev (Pavia) 6(4):5611.  https://doi.org/10.4081/or.2014.5611 CrossRefGoogle Scholar
  41. 41.
    Hintermann B, Regazzoni P, Lampert C, Stutz G, Gachter A (2000) Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg Br 82(3):345–351PubMedGoogle Scholar
  42. 42.
    Haq SA, Davatchi F (2011) Osteoarthritis of the knees in the COPCORD world. Int J Rheum Dis 14(2):122–129.  https://doi.org/10.1111/j.1756-185X.2011.01615.x CrossRefPubMedGoogle Scholar
  43. 43.
    Bitton R (2009) The economic burden of osteoarthritis. Am J Manag Care 15(8 Suppl):S230–S235PubMedGoogle Scholar
  44. 44.
    Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC (2005) The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology (Oxford) 44(12):1531–1537.  https://doi.org/10.1093/rheumatology/kei049 CrossRefGoogle Scholar
  45. 45.
    Global Burden of Disease Study C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet 386(9995):743–800.  https://doi.org/10.1016/S0140-6736(15)60692-4 CrossRefGoogle Scholar
  46. 46.
    Hunter DJ, Schofield D, Callander E (2014) The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol 10(7):437–441.  https://doi.org/10.1038/nrrheum.2014.44 CrossRefPubMedGoogle Scholar
  47. 47.
    Hiligsmann M, Cooper C, Guillemin F, Hochberg MC, Tugwell P, Arden N, Berenbaum F, Boers M, Boonen A, Branco JC, Maria-Luisa B, Bruyere O, Gasparik A, Kanis JA, Kvien TK, Martel-Pelletier J, Pelletier JP, Pinedo-Villanueva R, Pinto D, Reiter-Niesert S, Rizzoli R, Rovati LC, Severens JL, Silverman S, Reginster JY (2014) A reference case for economic evaluations in osteoarthritis: an expert consensus article from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 44(3):271–282.  https://doi.org/10.1016/j.semarthrit.2014.06.005 CrossRefPubMedGoogle Scholar
  48. 48.
    Mithoefer K, Hambly K, Logerstedt D, Ricci M, Silvers H, Villa SD (2012) Current concepts for rehabilitation and return to sport after knee articular cartilage repair in the athlete. J Orthop Sports Phys Ther 42(3):254–273PubMedGoogle Scholar
  49. 49.
    Kiviranta I, Tammi M, Jurvelin J, Arokoski J, Säuäumäunen A-M, Helminen HJ (1992) Articular cartilage thickness and glycosaminoglycan distribution in the canine knee joint after strenuous running exercise. Clin Orthop Relat Res 283:302–308Google Scholar
  50. 50.
    Stefan Lohmander L, Roos H, Dahlberg L, Hoerrner LA, Lark MW (1994) Temporal patterns of stromelysin-1, tissue inhibitor, and proteoglycan fragments in human knee joint fluid after injury to the cruciate ligament or meniscus. J Orthop Res 12(1):21–28Google Scholar
  51. 51.
    Gomoll AH, Minas T (2014) The quality of healing: articular cartilage. Wound Repair Regen 22(S1):30–38PubMedGoogle Scholar
  52. 52.
    McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR (2010) Articular cartilage injury in athletes. Cartilage 1(3):165–179PubMedPubMedCentralGoogle Scholar
  53. 53.
    Laskin RS (1978) Unicompartmental tibiofemoral resurfacing arthroplasty. J Bone Joint Surg Am 60(2):182–185PubMedGoogle Scholar
  54. 54.
    Erggelet C, Mandelbaum BR (2008) Principles of cartilage repair. Springer Science & Business MediaGoogle Scholar
  55. 55.
    Gorsline RT, Kaeding CC (2005) The use of NSAIDs and nutritional supplements in athletes with osteoarthritis: prevalence, benefits, and consequences. Clin Sports Med 24(1):71–82PubMedGoogle Scholar
  56. 56.
    Tamburrino P, Castellacci E (2016) Intra-articular injections of HYADD4-G in male professional soccer players with traumatic or degenerative knee chondropathy. A pilot, prospective study. J Sports Med Phys Fitness 56(12):1534PubMedGoogle Scholar
  57. 57.
    Hambly K, Silvers HJ, Steinwachs M (2012) Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage 3(1 suppl):50S–56SPubMedPubMedCentralGoogle Scholar
  58. 58.
    Bekkers J, de Windt TS, Brittberg M, Saris D (2012) Cartilage repair in football (soccer) athletes what evidence leads to which treatment? A critical review of the literature. Cartilage 3(1 suppl):43S–49SPubMedPubMedCentralGoogle Scholar
  59. 59.
    Harris JD, Brophy RH, Siston RA, Flanigan DC (2010) Treatment of chondral defects in the athlete's knee. Arthroscopy 26(6):841–852PubMedGoogle Scholar
  60. 60.
    Vilela CA, Correia C, Oliveira JM, Sousa RA, Reis RL, Espregueira-Mendes J (2017) Clinical management of articular cartilage lesions. In: Oliveira M, Reis RL (eds) Regenerative strategies for the treatment of knee joint disabilities. Studies in mechanobiology, tissue engineering and biomaterials. Springer, Cham, pp 29–53Google Scholar
  61. 61.
    Pereira H, Ripoll L, Oliveira JM, Reis RL, Espregueira-Mendes J, van Dijk C (2016) A engenharia de tecidos nas lesões do desporto. Traumatologia Desportiva. LIDEL, LisboaGoogle Scholar
  62. 62.
    Blevins FT, Steadman JR, Rodrigo JJ, Silliman J (1998) Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 21(7):761–767. discussion 767–768PubMedGoogle Scholar
  63. 63.
    Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res ((391 Suppl)):S362–S369Google Scholar
  64. 64.
    Caffey S, McPherson E, Moore B, Hedman T, Vangsness CT Jr (2005) Effects of radiofrequency energy on human articular cartilage: an analysis of 5 systems. Am J Sports Med 33(7):1035–1039.  https://doi.org/10.1177/0363546504271965 CrossRefPubMedGoogle Scholar
  65. 65.
    Spahn G, Kahl E, Muckley T, Hofmann GO, Klinger HM (2008) Arthroscopic knee chondroplasty using a bipolar radiofrequency-based device compared to mechanical shaver: results of a prospective, randomized, controlled study. Knee Surg Sports Traumatol Arthrosc 16(6):565–573.  https://doi.org/10.1007/s00167-008-0506-1 CrossRefPubMedGoogle Scholar
  66. 66.
    Bedi A, Feeley BT, Williams RJ (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92(4):994–1009PubMedGoogle Scholar
  67. 67.
    Krych AJ, Gobbi A, Lattermann C, Nakamura N (2016) Articular cartilage solutions for the knee: present challenges and future direction. J ISAKOS 1:93–104.  https://doi.org/10.1136/jisakos-2015-000037 CrossRefGoogle Scholar
  68. 68.
    Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. J Bone Joint Surg Am 87(9):1911–1920PubMedGoogle Scholar
  69. 69.
    Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13(3):213–221PubMedGoogle Scholar
  70. 70.
    Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063PubMedGoogle Scholar
  71. 71.
    Upmeier H, Bruggenjurgen B, Weiler A, Flamme C, Laprell H, Willich SN (2007) Follow-up costs up to 5 years after conventional treatments in patients with cartilage lesions of the knee. Knee Surg Sports Traumatol Arthrosc 15(3):249–257.  https://doi.org/10.1007/s00167-006-0182-y CrossRefPubMedGoogle Scholar
  72. 72.
    Laupattarakasem W, Laopaiboon M, Laupattarakasem P, Sumananont C (2008) Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst Rev (1):CD005118.  https://doi.org/10.1002/14651858.CD005118.pub2
  73. 73.
    Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64(3):460–466PubMedGoogle Scholar
  74. 74.
    Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ (2013) Survival analysis of microfracture in the osteoarthritic knee – minimum 10-year follow-up. Arthroscopy 29(2):244–250PubMedGoogle Scholar
  75. 75.
    Solheim E, Hegna J, Inderhaug E, Øyen J, Harlem T, Strand T (2016) Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 24(5):1587–1593PubMedGoogle Scholar
  76. 76.
    Case JM, Scopp JM (2016) Treatment of articular cartilage defects of the knee with microfracture and enhanced microfracture techniques. Sports Med Arthrosc 24(2):63–68PubMedGoogle Scholar
  77. 77.
    Koh Y-G, Kwon O-R, Kim Y-S, Choi Y-J, Tak D-H (2016) Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy 32(1):97–109PubMedGoogle Scholar
  78. 78.
    Sofu H, Kockara N, Oner A, Camurcu Y, Issın A, Sahin V (2017) Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy 33:209–216PubMedGoogle Scholar
  79. 79.
    Espregueira-Mendes J, Pereira H, Sevivas N, Varanda P, da Silva MV, Monteiro A, Oliveira JM, Reis RL (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20(6):1136–1142.  https://doi.org/10.1007/s00167-012-1910-0 CrossRefGoogle Scholar
  80. 80.
    Hangody L, Karpati Z (1994) New possibilities in the management of severe circumscribed cartilage damage in the knee. Magy Traumatol Ortop Kezseb Plasztikai Seb 37(3):237–243PubMedGoogle Scholar
  81. 81.
    Andrade R, Vasta S, Pereira R, Pereira H, Papalia R, Karahan M, Oliveira JM, Reis RL, Espregueira-Mendes J (2016) Knee donor-site morbidity after mosaicplasty – a systematic review. J Exp Orthop 3(1):31.  https://doi.org/10.1186/s40634-016-0066-0 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ferreira C, Vuurberg G, Oliveira JM, Espregueira-Mendes J, Pereira, H, Reis RL, Ripoll P (2016) Assessment of clinical outcome after osteochondral autologous transplantation technique for the treatment of ankle lesions: a systematic review. JISAKOS. doi:jisakos-2015-000020.R2Google Scholar
  83. 83.
    De Caro F, Bisicchia S, Amendola A, Ding L (2015) Large fresh osteochondral allografts of the knee: a systematic clinical and basic science review of the literature. Arthroscopy 31(4):757–765PubMedGoogle Scholar
  84. 84.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895.  https://doi.org/10.1056/nejm199410063311401 CrossRefGoogle Scholar
  85. 85.
    Roberts S, McCall IW, Darby AJ, Menage J, Evans H, Harrison PE, Richardson JB (2002) Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 5(1):1Google Scholar
  86. 86.
    Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation a long-term follow-up. Am J Sports Med 38(6):1117–1124PubMedGoogle Scholar
  87. 87.
    Tom Minas MDM, Arvind Von Keudell M, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472(1):41PubMedGoogle Scholar
  88. 88.
    Bartlett W, Gooding C, Carrington R, Skinner J, Briggs T, Bentley G (2005) Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. Bone Joint J 87(3):330–332Google Scholar
  89. 89.
    Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng M, Wood DJ (2014) Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 22(10):2522–2530PubMedGoogle Scholar
  90. 90.
    Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B (2015) Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 23(12):3729–3735Google Scholar
  91. 91.
    Ebert JR, Fallon M, Wood DJ, Janes GC (2017) A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med 45(1):59PubMedGoogle Scholar
  92. 92.
    Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz A, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464PubMedGoogle Scholar
  93. 93.
    Lee YHD, Suzer F, Thermann H (2014) Autologous matrix-induced chondrogenesis in the knee: a review. Cartilage.  https://doi.org/10.1177/1947603514529445
  94. 94.
    Gobbi A, Karnatzikos G, Sankineani SR (2014) One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 42(3):648–657PubMedGoogle Scholar
  95. 95.
    Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B (2011) One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions results at 2-year follow-up. Cartilage 2(3):286–299PubMedPubMedCentralGoogle Scholar
  96. 96.
    Huh SW, Shetty AA, Ahmed S, Lee DH, Kim SJ (2016) Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC). J Clin Orthop Trauma 7(3):153–156PubMedPubMedCentralGoogle Scholar
  97. 97.
    Stelzeneder D, Shetty AA, Kim S-J, Trattnig S, Domayer SE, Shetty V, Bilagi P (2013) Repair tissue quality after arthroscopic autologous collagen-induced chondrogenesis (ACIC) assessed via T2* mapping. Skelet Radiol 42(12):1657–1664Google Scholar
  98. 98.
    Shetty AA, Kim SJ, Shetty V, Jang JD, Huh SW, Lee DH (2016) Autologous collagen induced chondrogenesis (ACIC: Shetty–Kim technique) – a matrix based acellular single stage arthroscopic cartilage repair technique. J Clin Orthop Trauma 7(3):164–169PubMedPubMedCentralGoogle Scholar
  99. 99.
    Harris JD, Frank RM, McCormick FM, Cole BJ (2014) Minced cartilage techniques. Oper Tech Orthop 24(1):27–34Google Scholar
  100. 100.
    Farr J, Cole BJ, Sherman S, Karas V (2012) Particulated articular cartilage: CAIS and DeNovo NT. J Knee Surg 25(01):023–030Google Scholar
  101. 101.
    Farr J, Tabet SK, Margerrison E, Cole BJ (2014) Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med.  https://doi.org/10.1177/0363546514528671
  102. 102.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701PubMedGoogle Scholar
  103. 103.
    Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M (2011) Novel nano-composite multilayered biomaterial for osteochondral regeneration a pilot clinical trial. Am J Sports Med 39(6):1180–1190PubMedGoogle Scholar
  104. 104.
    Brix M, Kaipel M, Kellner R, Schreiner M, Apprich S, Boszotta H, Windhager R, Domayer S, Trattnig S (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632PubMedGoogle Scholar
  105. 105.
    Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D, Marenghi P, Delcogliano A (2014) Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 22(6):1260–1269PubMedGoogle Scholar
  106. 106.
    Hoemann CD, Tran-Khanh N, Chevrier A, Chen G, Lascau-Coman V, Mathieu C, Changoor A, Yaroshinsky A, McCormack RG, Stanish WD (2015) Chondroinduction is the main cartilage repair response to microfracture and microfracture with BST-CarGel results as shown by ICRS-II histological scoring and a novel zonal collagen type scoring method of human clinical biopsy specimens. Am J Sports Med 43(10):2469–2480PubMedGoogle Scholar
  107. 107.
    Méthot S, Changoor A, Tran-Khanh N, Hoemann CD, Stanish WD, Restrepo A, Shive MS, Buschmann MD (2015) Osteochondral biopsy analysis demonstrates that BST-CarGel treatment improves structural and cellular characteristics of cartilage repair tissue compared with microfracture. Cartilage.  https://doi.org/10.1177/1947603515595837
  108. 108.
    Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Méthot S, Vehik K, Restrepo A (2015) BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage 6(2):62–72PubMedPubMedCentralGoogle Scholar
  109. 109.
    Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Restrepo A, Shive MS (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95(18):1640–1650Google Scholar
  110. 110.
    Koshino T, Wada S, Ara Y, Saito T (2003) Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee. Knee 10(3):229–236PubMedGoogle Scholar
  111. 111.
    Brouwer RW, Huizinga MR, Duivenvoorden T, van Raaij TM, Verhagen AP, Bierma-Zeinstra SM, Verhaar JA (2014) Osteotomy for treating knee osteoarthritis. Cochrane Database Syst Rev 12:CD004019.  https://doi.org/10.1002/14651858.CD004019.pub4 CrossRefGoogle Scholar
  112. 112.
    Mithoefer K, Minas T, Peterson L, Yeon H, Micheli LJ (2005) Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 33(8):1147–1153Google Scholar
  113. 113.
    Mithoefer K, Williams RJ, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34(9):1413–1418PubMedGoogle Scholar
  114. 114.
    Bekkers JE, Inklaar M, Saris DB (2009) Treatment selection in articular cartilage lesions of the knee a systematic review. Am J Sports Med 37(1 suppl):148S–155SPubMedGoogle Scholar
  115. 115.
    de Windt TS, Saris DB (2014) Treatment algorithm for articular cartilage repair of the knee: towards patient profiling using evidence-based tools. In: Techniques in cartilage repair surgery. Springer, Berlin/Heidelberg, pp 23–31Google Scholar
  116. 116.
    Cole BJ, Pascual-Garrido C, Grumet RC (2009) Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 91(7):1778–1790PubMedGoogle Scholar
  117. 117.
    Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T (2010) Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am 92(14):2470–2490PubMedGoogle Scholar
  118. 118.
    Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ (2012) The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther 42(3):243–253PubMedGoogle Scholar
  119. 119.
    Murray IR, Benke MT, Mandelbaum BR (2016) Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg Sports Traumatol Arthrosc 24(5):1617–1626PubMedGoogle Scholar
  120. 120.
    Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 41-A:988–1020Google Scholar
  121. 121.
    O'Loughlin PF, Heyworth BE, Kennedy JG (2010) Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle. Am J Sports Med 38(2):392–404.  https://doi.org/10.1177/0363546509336336 CrossRefGoogle Scholar
  122. 122.
    Schachter AK, Chen AL, Reddy PD, Tejwani NC (2005) Osteochondral lesions of the talus. J Am Acad Orthop Surg 13(3):152–158Google Scholar
  123. 123.
    Ventura A, Terzaghi C, Legnani C, Borgo E (2013) Treatment of post-traumatic osteochondral lesions of the talus: a four-step approach. Knee Surg Sports Traumatol Arthrosc 21(6):1245–1250.  https://doi.org/10.1007/s00167-012-2028-0 CrossRefPubMedGoogle Scholar
  124. 124.
    Elias I, Raikin SM, Schweitzer ME, Besser MP, Morrison WB, Zoga AC (2009) Osteochondral lesions of the distal tibial plafond: localization and morphologic characteristics with an anatomical grid. Foot Ankle Int 30(6):524–529.  https://doi.org/10.3113/FAI.2009.0524 CrossRefGoogle Scholar
  125. 125.
    Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM (2007) Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int 28(2):154–161.  https://doi.org/10.3113/FAI.2007.0154 CrossRefGoogle Scholar
  126. 126.
    Vellet AD, Marks PH, Fowler PJ, Munro TG (1991) Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology 178(1):271–276.  https://doi.org/10.1148/radiology.178.1.1984319 CrossRefGoogle Scholar
  127. 127.
    Zengerink M, Struijs PA, Tol JL, van Dijk CN (2010) Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 18(2):238–246.  https://doi.org/10.1007/s00167-009-0942-6 CrossRefPubMedGoogle Scholar
  128. 128.
    Durr HD, Martin H, Pellengahr C, Schlemmer M, Maier M, Jansson V (2004) The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand 75(5):554–558.  https://doi.org/10.1080/00016470410001411 CrossRefGoogle Scholar
  129. 129.
    Verhagen RA, Struijs PA, Bossuyt PM, van Dijk CN (2003) Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin 8(2):233–242. viii–ixGoogle Scholar
  130. 130.
    Woods K, Harris I (1995) Osteochondritis dissecans of the talus in identical twins. J Bone Joint Surg Br 77(2):331PubMedGoogle Scholar
  131. 131.
    Hermanson E, Ferkel RD (2009) Bilateral osteochondral lesions of the talus. Foot Ankle Int 30(8):723–727.  https://doi.org/10.3113/FAI.2009.0723 CrossRefGoogle Scholar
  132. 132.
    Frenkel SR, DCP E (1999) Degradation and repair of articular cartilage. Front Biosci 4:671–685Google Scholar
  133. 133.
    van Dijk CN, Bossuyt PM, Marti RK (1996) Medial ankle pain after lateral ligament rupture. J Bone Joint Surg Br 78(4):562–567PubMedGoogle Scholar
  134. 134.
    Pereira H, Vuurberg G, Gomes N, Oliveira JM, Ripoll PL, Reis RL, Espregueira-Mendes J, van Dijk CN (2016) Arthroscopic repair of ankle instability with all-soft knotless anchors. Arthrosc Tech 5(1):e99–e107.  https://doi.org/10.1016/j.eats.2015.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Saxena A, Luhadiya A, Ewen B, Goumas C (2011) Magnetic resonance imaging and incidental findings of lateral ankle pathologic features with asymptomatic ankles. J Foot Ankle Surg 50(4):413–415.  https://doi.org/10.1053/j.jfas.2011.03.011 CrossRefGoogle Scholar
  136. 136.
    Lambers KTA, Dahmen J, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs G (2017) No superior surgical treatment for secondary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-017-4629-0
  137. 137.
    van Dijk CN, van Bergen CJ (2008) Advancements in ankle arthroscopy. J Am Acad Orthop Surg 16(11):635–646Google Scholar
  138. 138.
    Zengerink M, van Dijk CN (2012) Complications in ankle arthroscopy. Knee Surg Sports Traumatol Arthrosc 20(8):1420–1431.  https://doi.org/10.1007/s00167-012-2063-x CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Kerkhoffs GM, Reilingh ML, Gerards RM, de Leeuw PA (2016) Lift, drill, fill and fix (LDFF): a new arthroscopic treatment for talar osteochondral defects. Knee Surg Sports Traumatol Arthrosc 24(4):1265–1271.  https://doi.org/10.1007/s00167-014-3057-7 CrossRefPubMedGoogle Scholar
  140. 140.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99.  https://doi.org/10.1016/j.addr.2009.07.019 CrossRefGoogle Scholar
  141. 141.
    Brittberg M (2010) Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38(6):1259–1271.  https://doi.org/10.1177/0363546509346395 CrossRefGoogle Scholar
  142. 142.
    Candrian C, Miot S, Wolf F, Bonacina E, Dickinson S, Wirz D, Jakob M, Valderrabano V, Barbero A, Martin I (2010) Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair? Osteoarthritis Cartilage 18(8):1067–1076.  https://doi.org/10.1016/j.joca.2010.04.010 CrossRefPubMedGoogle Scholar
  143. 143.
    Caron MMJ, Emans PJ, Coolsen MME, Voss L, Surtel DAM, Cremers A, van Rhijn LW, Welting TJM (2012) Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil 20(10):1170–1178.  https://doi.org/10.1016/j.joca.2012.06.016 CrossRefGoogle Scholar
  144. 144.
    Centeno CJ, Schultz JR, Cheever M, Robinson B, Freeman M, Marasco W (2010) Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 5(1):81–93Google Scholar
  145. 145.
    Che JH, Zhang ZR, Li GZ, Tan WH, Bai XD, Qu FJ (2010) Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg Sports Traumatol Arthrosc 18(4):496–503.  https://doi.org/10.1007/s00167-009-0962-2 CrossRefPubMedGoogle Scholar
  146. 146.
    Clar C, Cummins E, McIntyre L, Thomas S, Lamb J, Bain L, Jobanputra P, Waugh N (2005) Clinical and cost-effectiveness of autologous chondrocyte implantation for cartilage defects in knee joints: systematic review and economic evaluation. Health Technol Assess 9(47):iii–iiv. ix–x, 1–82. doi:03-65-01 [pii]PubMedGoogle Scholar
  147. 147.
    Dhollander AA, De Neve F, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC (2011) Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc 19(4):536–542.  https://doi.org/10.1007/s00167-010-1337-4 CrossRefPubMedGoogle Scholar
  148. 148.
    DiGiovanni CW, Lin SS, Baumhauer JF, Daniels T, Younger A, Glazebrook M, Anderson J, Anderson R, Evangelista P, Lynch SE (2013) Recombinant human platelet-derived growth factor-BB and beta-tricalcium phosphate (rhPDGF-BB/beta-TCP): an alternative to autogenous bone graft. J Bone Joint Surg Am 95(13):1184–1192.  https://doi.org/10.2106/JBJS.K.01422 CrossRefGoogle Scholar
  149. 149.
    Enea D, Gwynne J, Kew S, Arumugam M, Shepherd J, Brooks R, Ghose S, Best S, Cameron R, Rushton N (2012) Collagen fibre implant for tendon and ligament biological augmentation. In vivo study in an ovine model. Knee Surg Sports Traumatol Arthrosc.  https://doi.org/10.1007/s00167-012-2102-7
  150. 150.
    Gurkan UA, Tasoglu S, Kavaz D, Demirci U (2012) Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 1:149–158PubMedPubMedCentralGoogle Scholar
  151. 151.
    Harris JD, Siston RA, Pan X, Flanigan DC (2010) Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 92(12):2220–2233.  https://doi.org/10.2106/JBJS.J.00049 CrossRefGoogle Scholar
  152. 152.
    Nagura I, Fujioka H, Kokubu T, Makino T, Sumi Y, Kurosaka M (2007) Repair of osteochondral defects with a new porous synthetic polymer scaffold. J Bone Joint Surg Br 89(2):258–264.  https://doi.org/10.1302/0301-620X.89B2.17754 CrossRefGoogle Scholar
  153. 153.
    Pereira D, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL (2013) Gellan gum-based bilayered scaffolds for application in ostheochondral tissue engineering. J Tissue Eng Regen Med 6(1)Google Scholar
  154. 154.
    Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27(5):307–314.  https://doi.org/10.1016/j.tibtech.2009.02.005 CrossRefGoogle Scholar
  155. 155.
    Ettinger S, Stukenborg-Colsman C, Waizy H, Becher C, Yao D, Claassen L, Noll Y, Plaass C (2017) Results of HemiCAP(R) implantation as a salvage procedure for osteochondral lesions of the talus. J Foot Ankle Surg 56(4):788–792.  https://doi.org/10.1053/j.jfas.2017.04.001 CrossRefGoogle Scholar
  156. 156.
    Pagenstert GI, Hintermann B, Barg A, Leumann A, Valderrabano V (2007) Realignment surgery as alternative treatment of varus and valgus ankle osteoarthritis. Clin Orthop Relat Res 462:156–168.  https://doi.org/10.1097/BLO.0b013e318124a462 CrossRefGoogle Scholar
  157. 157.
    Ateshian GA, Soslowsky LJ, Mow VC (1991) Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J Biomech 24(8):761–776PubMedGoogle Scholar
  158. 158.
    Swann AC, Seedhom BB (1993) The stiffness of normal articular cartilage and the predominant acting stress levels: implications for the aetiology of osteoarthrosis. Br J Rheumatol 32(1):16–25PubMedGoogle Scholar
  159. 159.
    Kimizuka M, Kurosawa H, Fukubayashi T (1980) Load-bearing pattern of the ankle joint. Contact area and pressure distribution. Arch Orthop Trauma Surg 96(1):45–49PubMedGoogle Scholar
  160. 160.
    Beaudoin AJ, Fiore SM, Krause WR, Adelaar RS (1991) Effect of isolated talocalcaneal fusion on contact in the ankle and talonavicular joints. Foot Ankle 12(1):19–25PubMedGoogle Scholar
  161. 161.
    Peyron JG (1984) The epidemiology of osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ (eds) Osteoarthritis. Diagnosis and treatment. W.B. Saunders, Philadelphia, pp S9–27Google Scholar
  162. 162.
    Ihn JC, Kim SJ, Park IH (1993) In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy. Int Orthop 17(4):214–218PubMedGoogle Scholar
  163. 163.
    Rolauffs B, Muehleman C, Li J, Kurz B, Kuettner KE, Frank E, Grodzinsky AJ (2010) Vulnerability of the superficial zone of immature articular cartilage to compressive injury. Arthritis Rheum 62(10):3016–3027.  https://doi.org/10.1002/art.27610 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Roukis TS (2004) Corrective ankle osteotomies. Clin Podiatr Med Surg 21(3):353–370. vi.  https://doi.org/10.1016/j.cpm.2004.03.007 CrossRefPubMedGoogle Scholar
  165. 165.
    Yi Y, Lee W (2017) Peri-talar re-alignment osteotomy for joint preservation in asymmetrical ankle osteoarthritis. EFORT Open Rev 2(7):324–331.  https://doi.org/10.1302/2058-5241.2.160021 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447.  https://doi.org/10.1007/s00167-010-1072-x CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Chen L, Lu X, Li S, Sun Q, Li W, Song D (2012) Sustained delivery of BMP-2 and platelet-rich plasma-released growth factors contributes to osteogenesis of human adipose-derived stem cells. Orthopedics 35(9):e1402–e1409.  https://doi.org/10.3928/01477447-20120822-29 CrossRefPubMedGoogle Scholar
  168. 168.
    Amable PR, Carias RB, Teixeira MV, da Cruz Pacheco I, Correa do Amaral RJ, Granjeiro JM, Borojevic R (2013) Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther 4(3):67.  https://doi.org/10.1186/scrt218 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Im G II, Shin Y-W, Lee K-B (2005) Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 13(10):845–853.  https://doi.org/10.1016/j.joca.2005.05.005 PubMedGoogle Scholar
  170. 170.
    Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29(29):3973–3982.  https://doi.org/10.1016/j.biomaterials.2008.06.026 PubMedGoogle Scholar
  171. 171.
    Li M, Chen M, Han W, Fu X (2010) How far are induced pluripotent stem cells from the clinic? Ageing Res Rev 9(3):257–264.  https://doi.org/10.1016/j.arr.2010.03.001 PubMedGoogle Scholar
  172. 172.
    Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, Maharam ER, Leong DJ, Laudier DM, Ruike T, Torina PJ, Zaidi M, Majeska RJ, Schaffler MB, Flatow EL, Sun HB (2011) BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One 6(3):e17531.  https://doi.org/10.1371/journal.pone.0017531 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair.  https://doi.org/10.1038/nrrheum.2013.109
  174. 174.
    Lubowitz JH, Provencher MT, Poehling GG (2013) Stem cells in the knee. Arthroscopy 29(4):609–610.  https://doi.org/10.1016/j.arthro.2013.01.005 PubMedGoogle Scholar
  175. 175.
    Silva A, Sampaio R, Fernandes R, Pinto E (2014) Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 22(1):66–71.  https://doi.org/10.1007/s00167-012-2279-9 CrossRefPubMedGoogle Scholar
  176. 176.
    Bacelar AH, Cengiz IF, Silva-Correia J, Sousa RA, Oliveira JM, Reisa RL (2017) “Smart” hydrogels in tissue engineering and regenerative medicine applications. In: Handbook of intelligent scaffolds for tissue engineering and regenerative medicine 2:327–361. https://www.crcpress.com/Handbook-of-Intelligent-Scaffolds-for-Tissue-Engineering-and-Regenerative/Khang/p/book/9789814745123
  177. 177.
    Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32(34):8771–8782.  https://doi.org/10.1016/j.biomaterials.2011.08.073 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5:17014.  https://doi.org/10.1038/boneres.2017.14 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Pereira H, Silva-Correia J, Yan L-P, Oliveira A, Oliveira J-M, Espregueira-Mendes J, Reis R (2013) Combined application of Silk-fibroin/methacrylated gellan gum hydrogel in tissue engineering approaches for partial and/or total meniscus replacement while enabling control of neovascularization. Rev Chir Orthop Traumatol 99(8):e18-e19Google Scholar
  180. 180.
    Rao JK, Ramesh DV, Rao KP (1994) Implantable controlled delivery systems for proteins based on collagen — pHEMA hydrogels. Biomaterials 15(5):383–389.  https://doi.org/10.1016/0142-9612(94)90251-8 CrossRefPubMedGoogle Scholar
  181. 181.
    Silva-Correia J, Miranda-Goncalves V, Salgado AJ, Sousa N, Oliveira JM, Reis RM, Reis RL (2012) Angiogenic potential of gellan-gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study. Tissue Eng A 18(11-12):1203–1212.  https://doi.org/10.1089/ten.TEA.2011.0632 CrossRefGoogle Scholar
  182. 182.
    Evans CH (2013) Advances in regenerative orthopedics. Mayo Clin Proc 88(11):1323–1339.  https://doi.org/10.1016/j.mayocp.2013.04.027 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
  184. 184.
    Foster TE, Puskas BL, Mandelbaum BR, Gerhardt MB, Rodeo SA (2009) Platelet-rich plasma: from basic science to clinical applications. Am J Sports Med 37(11):2259–2272.  https://doi.org/10.1177/0363546509349921 CrossRefPubMedGoogle Scholar
  185. 185.
    Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Romeo AA, Bradley JP, Arciero RA, Beitzel K (2012) Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 94(4):308–316.  https://doi.org/10.2106/JBJS.K.00430 CrossRefPubMedGoogle Scholar
  186. 186.
    Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL (2017) Advanced regenerative strategies for human knee meniscus. In: Regenerative strategies for the treatment of knee joint disabilities. Springer, pp 271–285Google Scholar
  187. 187.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147Google Scholar
  188. 188.
    da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299.  https://doi.org/10.1634/stemcells.2007-1122 CrossRefPubMedGoogle Scholar
  189. 189.
    Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109(8):923–940.  https://doi.org/10.1161/circresaha.111.243147 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Guilak F, Estes BT, Diekman BO, Moutos FT, Gimble JM (2010) 2010 Nicolas Andry Award: Multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin Orthop Relat Res 468(9):2530–2540.  https://doi.org/10.1007/s11999-010-1410-9 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE (2012) Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif 45(2):111–120.  https://doi.org/10.1111/j.1365-2184.2011.00804.x CrossRefPubMedGoogle Scholar
  192. 192.
    Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14(12):1307–1314.  https://doi.org/10.1007/s00167-006-0124-8 CrossRefPubMedGoogle Scholar
  193. 193.
    Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5-6):419–427.  https://doi.org/10.1016/j.cytogfr.2009.10.002 CrossRefPubMedGoogle Scholar
  194. 194.
    Bashir J, Sherman A, Lee H, Kaplan L, Hare JM (2014) Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases. PM R 6(1):61–69.  https://doi.org/10.1016/j.pmrj.2013.05.007 CrossRefPubMedGoogle Scholar
  195. 195.
    Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 15(2):226–231.  https://doi.org/10.1016/j.joca.2006.08.008 CrossRefPubMedGoogle Scholar
  196. 196.
    Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79.  https://doi.org/10.1002/term.8 CrossRefPubMedGoogle Scholar
  197. 197.
    Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S (2010) Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am 92(Suppl 2):2–11.  https://doi.org/10.2106/jbjs.j.00813 CrossRefPubMedGoogle Scholar
  198. 198.
    Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S (2013) One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg 97(2):145–151.  https://doi.org/10.1007/s12306-013-0242-7 CrossRefGoogle Scholar
  199. 199.
    Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B (2009) One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 467(12):3307–3320.  https://doi.org/10.1007/s11999-009-0885-8 CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F (2010) Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury 41(11):1196–1203.  https://doi.org/10.1016/j.injury.2010.09.028 CrossRefPubMedGoogle Scholar
  201. 201.
    Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR, El Shewy MT, Azzam A, Abdel Aziz MT (2010) The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage 1(4):253–261.  https://doi.org/10.1177/1947603510366027 CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F (2013) One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med 41(3):511–518.  https://doi.org/10.1177/0363546512467622 CrossRefGoogle Scholar
  203. 203.
    Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K (2011) Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thai 94(3):395–400PubMedGoogle Scholar
  204. 204.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137.  https://doi.org/10.1016/j.biomaterials.2006.07.034 CrossRefPubMedGoogle Scholar
  205. 205.
    Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116.  https://doi.org/10.1177/0363546509359067 CrossRefPubMedGoogle Scholar
  206. 206.
    Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D (2012) Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech 1(2):e175–e180.  https://doi.org/10.1016/j.eats.2012.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A (2015) One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee 22(1):30–35.  https://doi.org/10.1016/j.knee.2014.10.003 CrossRefPubMedGoogle Scholar
  208. 208.
    Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Kaps C, Gigante A (2013) Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate. Knee 20(6):562–569.  https://doi.org/10.1016/j.knee.2013.04.003 CrossRefPubMedGoogle Scholar
  209. 209.
    Rai V, Dilisio MF, Dietz NE, Agrawal DK (2017) Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A 105(8):2343–2354.  https://doi.org/10.1002/jbm.a.36087 CrossRefPubMedGoogle Scholar
  210. 210.
    He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem 284(30):20136–20146.  https://doi.org/10.1074/jbc.M109.021881 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Cengiz IF, Oliveira JM, Reis RL (2014) Tissue engineering and regenerative medicine strategies for the treatment of osteochondral lesions. In: 3D multiscale physiological human. Springer, pp 25–47Google Scholar
  212. 212.
    Correia SI, Silva-Correia J, Pereira H, Canadas RF, da Silva Morais A, Frias AM, Sousa RA, van Dijk CN, Espregueira-Mendes J, Reis RL, Oliveira JM (2015) Posterior talar process as a suitable cell source for treatment of cartilage and osteochondral defects of the talus. J Tissue Eng Regen Med.  https://doi.org/10.1002/term.2092
  213. 213.
    Khan WS, Longo UG, Adesida A, Denaro V (2012) Stem cell and tissue engineering applications in orthopaedics and musculoskeletal medicine. Stem Cells Int 2012:403170.  https://doi.org/10.1155/2012/403170 CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Oliveira M, Reis RL (2017) Regenerative strategies for the treatment of knee joint disabilities. Studies in mechanobiology, tissue engineering and biomaterials. Springer.  https://doi.org/10.1007/978-3-319-44785-8
  215. 215.
    Patrascu JM, Freymann U, Kaps C, Poenaru DV (2010) Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br 92(8):1160–1163.  https://doi.org/10.1302/0301-620x.92b8.24341 CrossRefPubMedGoogle Scholar
  216. 216.
    Siclari A, Mascaro G, Kaps C, Boux E (2014) A 5-year follow-up after cartilage repair in the knee using a platelet-rich plasma-immersed polymer-based implant. Open Orthop J 8:346–354.  https://doi.org/10.2174/1874325001408010346 CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, Mano JF, Oliveira AL, Oliveira JM, Reis RL (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241.  https://doi.org/10.1016/j.actbio.2014.10.021 CrossRefGoogle Scholar
  218. 218.
    Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301.  https://doi.org/10.1016/j.actbio.2011.09.037 CrossRefPubMedGoogle Scholar
  219. 219.
    Chen Y, Bloemen V, Impens S, Moesen M, Luyten FP, Schrooten J (2011) Characterization and optimization of cell seeding in scaffolds by factorial design: quality by design approach for skeletal tissue engineering. Tissue Eng Part C Methods 17(12):1211–1221.  https://doi.org/10.1089/ten.tec.2011.0092 CrossRefPubMedGoogle Scholar
  220. 220.
    Borselli C, Cezar CA, Shvartsman D, Vandenburgh HH, Mooney DJ (2011) The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32(34):8905–8914.  https://doi.org/10.1016/j.biomaterials.2011.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Christensen BB, Foldager CB, Jensen J, Jensen NC, Lind M (2016) Poor osteochondral repair by a biomimetic collagen scaffold: 1- to 3-year clinical and radiological follow-up. Knee Surg Sports Traumatol Arthrosc 24(7):2380–2387.  https://doi.org/10.1007/s00167-015-3538-3 CrossRefPubMedGoogle Scholar
  222. 222.
    Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL (2011) Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy 27(12):1706–1719.  https://doi.org/10.1016/j.arthro.2011.08.283 CrossRefPubMedGoogle Scholar
  223. 223.
    Cengiz IF, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL (2017) Treatments of meniscus lesions of the knee: current concepts and future perspectives. Regen Eng Transl Med:1–19Google Scholar
  224. 224.
    Pleshko N, Grande DA, Myers KR (2012) Nanotechnology in orthopaedics. J Am Acad Orthop Surg 20(1):60–62.  https://doi.org/10.5435/JAAOS-20-01-060 CrossRefPubMedGoogle Scholar
  225. 225.
    Lu H, Lv L, Dai Y, Wu G, Zhao H, Zhang F (2013) Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS One 8(7):e69950.  https://doi.org/10.1371/journal.pone.0069950 CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    El-Sadik AO, El-Ansary A, Sabry SM (2010) Nanoparticle-labeled stem cells: a novel therapeutic vehicle. Clin Pharm 2:9–16.  https://doi.org/10.2147/CPAA.S8931 CrossRefGoogle Scholar
  227. 227.
    Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering – part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev 19(4):308–326.  https://doi.org/10.1089/ten.TEB.2012.0138 CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8(55):153–170.  https://doi.org/10.1098/rsif.2010.0223 CrossRefPubMedGoogle Scholar
  229. 229.
    Correia SI, Pereira H, Silva-Correia J, Van Dijk CN, Espregueira-Mendes J, Oliveira JM, Reis RL (2014) Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface 11(92):20130784.  https://doi.org/10.1098/rsif.2013.0784 CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Lim EH, Sardinha JP, Myers S (2014) Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg 41(3):231–240.  https://doi.org/10.5999/aps.2014.41.3.231 CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS (2010) Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 38(6):2167–2182.  https://doi.org/10.1007/s10439-010-0028-0 CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Leping Y, Oliveira JM, Oliveira AL, Reis RL (2015) Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng.  https://doi.org/10.1021/ab500038y
  233. 233.
    Madry H, Orth P, Cucchiarini M (2011) Gene therapy for cartilage repair. Cartilage 2(3):201–225.  https://doi.org/10.1177/1947603510392914 CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Reitmaier S, Wolfram U, Ignatius A, Wilke H-J, Gloria A, Martín-Martínez JM, Silva-Correia J, Miguel Oliveira J, Luís Reis R, Schmidt H (2012) Hydrogels for nucleus replacement – facing the biomechanical challenge. J Mech Behav Biomed Mater (0). doi: https://doi.org/10.1016/j.jmbbm.2012.05.010 CrossRefPubMedGoogle Scholar
  235. 235.
    Cengiz I, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, Oliveira J, Reis R (2016) Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds. Bioprinting 1:1–10Google Scholar
  236. 236.
    Cengiz IF, Pereira H, Pitikakis M, Espregueira-Mendes J, Oliveira JM, Reis RL (2017) Building the basis for patient-specific meniscal scaffolds. In: Gobbi A, Espregueira-Mendes J, Lane JG, Karahan M (eds) Bio-orthopaedics: a new approach. Springer, Berlin/Heidelberg, pp 411–418.  https://doi.org/10.1007/978-3-662-54181-4_32 CrossRefGoogle Scholar
  237. 237.
    Mouser VHM, Levato R, Bonassar LJ, D'Lima DD, Grande DA, Klein TJ, Saris DBF, Zenobi-Wong M, Gawlitta D, Malda J (2017) Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration. Cartilage 8(4):327–340.  https://doi.org/10.1177/1947603516665445 CrossRefPubMedGoogle Scholar
  238. 238.
    Oner T, Cengiz I, Pitikakis M, Cesario L, Parascandolo P, Vosilla L, Viano G, Oliveira J, Reis R, Silva-Correia J (2017) 3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds. J 3D Print Med 1(2):91–101.  https://doi.org/10.2217/3dp-2016-0011 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hélder Pereira
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Ibrahim Fatih Cengiz
    • 3
    • 4
    • 6
  • Carlos Vilela
    • 3
    • 4
    • 6
  • Pedro L. Ripoll
    • 2
    • 5
  • João Espregueira-Mendes
    • 3
    • 4
    • 7
    • 8
    • 9
  • J. Miguel Oliveira
    • 3
    • 4
    • 6
    • 10
  • Rui L. Reis
    • 3
    • 4
    • 6
    • 10
  • C. Niek van Dijk
    • 5
    • 6
  1. 1.Orthopedic Department Centro Hospitalar Póvoa de VarzimVila do CondePortugal
  2. 2.International Centre of Sports Traumatology of the AveTaipasPortugal
  3. 3.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da GandraBarco, GuimarãesPortugal
  4. 4.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  5. 5.Ripoll y De Prado Sports Clinic: Murcia – Madrid FIFA Medical Centre of ExcellenceMadridSpain
  6. 6.Department of Orthopaedic Surgery and Academic Center for Evidence-Based Sports Medicine, Academic Medical Center, University of Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
  7. 7.Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of ExcellencePortoPortugal
  8. 8.Dom Henrique Research CentrePortoPortugal
  9. 9.Orthopedic Department, University of MinhoBragaPortugal
  10. 10.The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of MinhoGuimarãesPortugal

Personalised recommendations