Small Animal Models

  • Alain da Silva MoraisEmail author
  • J. Miguel Oliveira
  • Rui L. Reis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


Animal assays represent an important stage between in vitro studies and human clinical applications. These models are crucial for biomedical research and regenerative medicine studies, as these offer precious information for systematically assessing the efficacy and risks of recently created biomaterials, medical devices, drugs, and therapeutic modalities prior to initiation of human clinical trials. Therefore, selecting a suitable experimental model for tissue engineering purposes is essential to establish valid conclusions. However, it remains important to be conscious of the advantages and limitations of the various small and large animal models frequently used for biomedical research as well as the different challenges encountered in extrapolating data obtained from animal studies and the risks of misinterpretation. This chapter discusses the various small animal model strategies used for osteochondral defect repair. Particular emphasis will be placed on analyzing the materials and strategies used in each model.


Small animal models Scaffolds Biomaterials Stem cells Growth factors Osteochondral regeneration strategies 



Alain da Silva Morais acknowledges ERC-2012-ADG 20120216–321266 (ComplexiTE) for his postdoc scholarship. The research leading to this work has received funding from the Portuguese Foundation for Science and Technology for the funds provided under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015).


  1. 1.
    Mural RJ et al (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296(5573):1661CrossRefPubMedGoogle Scholar
  2. 2.
    Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437(7055):69–87CrossRefGoogle Scholar
  3. 3.
    Erickson ZT, Falkenberg EA, Metz GA (2014) Lifespan psychomotor behaviour profiles of multigenerational prenatal stress and artificial food dye effects in rats. PLoS One 9(6):e92132PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Franklin TB et al (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68(5):408–415PubMedCrossRefGoogle Scholar
  5. 5.
    Shanks N, Greek R, Greek J (2009) Are animal models predictive for humans? Philos Ethics Humanit Med 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Wang X, Ye JD, Wang Y (2007) Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater 3:757PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  8. 8.
    PR Newswire (18 Dec 2016) Tissue Engineering – Global Market Outlook (2016–2022).Google Scholar
  9. 9.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69CrossRefGoogle Scholar
  10. 10.
    Vilela CA et al (2015) Cartilage repair using hydrogels: a critical review of in vivo experimental designs. ACS Biomater Sci Eng 1(9):726–739CrossRefGoogle Scholar
  11. 11.
    McCoy AM (2015) Animal models of osteoarthritis. Vet Pathol 52(5):803–818PubMedCrossRefGoogle Scholar
  12. 12.
    Pelletier J-P et al (2010) Experimental models of osteoarthritis usefulness in the development of disease-modifying osteoarthritis drugs/agents. Therapy 7(6):621–634CrossRefGoogle Scholar
  13. 13.
    Kim K et al (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Madry H et al (2013) Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater 25:229–247PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lv YM, Yu QS (2015) Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold. Bone Joint Res 4(4):56–64PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Iamaguti LS et al (2012) Reparação de defeitos osteocondrais de cães com implante de cultura de condrócitos homólogos e membrana biossintética de celulose: avaliação clínica, ultrassonográfica e macroscópica. Arq Bras Med Vet Zootec 64:1483–1490CrossRefGoogle Scholar
  17. 17.
    Deng T et al (2012) Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med 8(7):546–556PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cokelaere S, Malda J, van Weeren R (2016) Cartilage defect repair in horses: current strategies and recent developments in regenerative medicine of the equine joint with emphasis on the surgical approach. Vet J 214:61–71PubMedCrossRefGoogle Scholar
  19. 19.
    Schleicher I et al (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192PubMedCrossRefGoogle Scholar
  20. 20.
    Rautiainen J et al (2013) Osteochondral repair: evaluation with sweep imaging with Fourier transform in an equine model. Radiology 269(1):113–121PubMedCrossRefGoogle Scholar
  21. 21.
    Pilichi S et al (2014) Treatment with embryonic stem-like cells into osteochondral defects in sheep femoral condyles. BMC Vet Res 10:301PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Desjardin C et al (2014) Omics technologies provide new insights into the molecular physiopathology of equine osteochondrosis. BMC Genomics 15(1):947PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Orth P et al (2013) Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res 31(11):1772–1779PubMedPubMedCentralGoogle Scholar
  24. 24.
    Eltawil NM et al (2009) A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthr Cartil 17(6):695–704PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fitzgerald J (2017) Enhanced cartilage repair in “healer” mice-new leads in the search for better clinical options for cartilage repair. Semin Cell Dev Biol 62:78–85PubMedCrossRefGoogle Scholar
  26. 26.
    Fitzgerald J et al (2008) Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthr Cartil 16(11):1319–1326PubMedCrossRefGoogle Scholar
  27. 27.
    Matsuoka M et al (2015) An articular cartilage repair model in common C57Bl/6 mice. Tissue Eng Part C Methods 21(8):767–772PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rai MF et al (2012) Heritability of articular cartilage regeneration and its association with ear wound healing in mice. Arthritis Rheum 64(7):2300–2310PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wang J et al (2017) Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials 120:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wang P et al (2016) Flavonoid compound icariin activates hypoxia inducible factor-1alpha in chondrocytes and promotes articular cartilage repair. PLoS One 11(2):e0148372PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mak J et al (2016) Intra-articular injection of synovial mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep 6:23076PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Jin G-Z et al (2014) Biphasic nanofibrous constructs with seeded cell layers for osteochondral repair. Tissue Eng Part C Methods 20(11):895–904PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sartori M et al (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C Mater Biol Appl 70(Pt 1):101–111PubMedCrossRefGoogle Scholar
  34. 34.
    Shalumon K et al (2016) Microsphere-based hierarchically juxtapositioned biphasic scaffolds prepared from poly(lactic-co-glycolic acid) and nanohydroxyapatite for osteochondral tissue engineering. Polymers 8(12):429CrossRefGoogle Scholar
  35. 35.
    Sheehy EJ et al (2013) Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 9(3):5484–5492PubMedCrossRefGoogle Scholar
  36. 36.
    Yan L-P et al (2015) Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng 1(4):183–200CrossRefGoogle Scholar
  37. 37.
    Li S et al (2017) A conditional knockout mouse model reveals a critical role of PKD1 in osteoblast differentiation and bone development. Sci Rep 7:40505PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126(2):509–526PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Oh H, Chun CH, Chun JS (2012) Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum 64(8):2568–2578PubMedCrossRefGoogle Scholar
  40. 40.
    Kaar TK, Fraher JP, Brady MP (1998) A quantitative study of articular repair in the guinea pig. Clin Orthop Relat Res 346:228–243CrossRefGoogle Scholar
  41. 41.
    Kraus VB et al (2010) The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthr Cartil 18(Suppl 3):S35–S52PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Bendele AM, Hulma JF (1988) Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 31(4):561–565PubMedCrossRefGoogle Scholar
  43. 43.
    Vázquez-Portalatín N et al (2015) Accuracy of ultrasound-guided intra-articular injections in guinea pig knees. Bone Joint Res 4:1–5PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chu CR, Szczodry M, Bruno S (2010) Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev 16(1):105–115PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gregory MH et al (2012) A review of translational animal models for knee osteoarthritis. Arthritis 2012:764621PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ahern BJ et al (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthr Cartil 17(6):705–713PubMedCrossRefGoogle Scholar
  47. 47.
    Orth P, Madry H (2015) Advancement of the subchondral bone plate in translational models of osteochondral repair: implications for tissue engineering approaches. Tissue Eng Part B Rev 21(6):504–520PubMedCrossRefGoogle Scholar
  48. 48.
    Katagiri H, Mendes LF, Luyten FP (2017) Definition of a critical size osteochondral knee defect and its negative effect on the surrounding articular cartilage in the rat. Osteoarthr Cartil 25(9):1531–1540PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shimizu R et al (2015) Repair mechanism of osteochondral defect promoted by bioengineered chondrocyte sheet. Tissue Eng Part A 21(5–6):1131–1141PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshimura H et al (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327(3):449–462PubMedCrossRefGoogle Scholar
  51. 51.
    Nawata M et al (2005) Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 52(1):155–163PubMedCrossRefGoogle Scholar
  52. 52.
    Wei JP et al (2009) Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells 11(1):19–26PubMedCrossRefGoogle Scholar
  53. 53.
    Lee JM et al (2012) In vivo tracking of mesenchymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20(7):1434–1442PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Chijimatsu R et al (2017) Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int 2017:1960965PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Itokazu M et al (2016) Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair: a preclinical study. Cartilage 7(4):361–372PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Muttigi MS et al (2017) Matrilin-3 co-delivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model. J Tissue Eng Regen Med 2017;1–9.
  57. 57.
    Oshima Y et al (2005) Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J Histochem Cytochem 53(2):207–216PubMedCrossRefGoogle Scholar
  58. 58.
    Yamaguchi S et al (2016) The effect of exercise on the early stages of mesenchymal stromal cell-induced cartilage repair in a rat osteochondral defect model. PLoS One 11(3):e0151580PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Okano T et al (2014) Systemic administration of granulocyte colony-stimulating factor for osteochondral defect repair in a rat experimental model. Cartilage 5(2):107–113PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhang S et al (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24(12):2135–2140PubMedCrossRefGoogle Scholar
  61. 61.
    Ferretti M et al (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12(9):2657–2663PubMedCrossRefGoogle Scholar
  62. 62.
    Coburn JM et al (2012) Bioinspired nanofibers support chondrogenesis for articular cartilage repair. PNAS 109(25):10012–10017PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Saha S et al (2013) Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS One 8(11):e80004PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nogami M et al (2016) A human amnion-derived extracellular matrix-coated cell-free scaffold for cartilage repair: in vitro and in vivo studies. Tissue Eng Part A 22(7–8):680–688PubMedCrossRefGoogle Scholar
  65. 65.
    Alemdar C et al (2016) Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats. Indian J Orthop 50(4):414–420PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dahlin RL et al (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35(26):7460–7469PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Frohbergh ME et al (2016) Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthr Cartil 24(4):752–762PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    ASTM F2451-05 (2010) Standard guide for in vivo assessment of implantable devices intended to repair or regenerate articular cartilage. ASTM International, West Conshohocken, PAGoogle Scholar
  69. 69.
    Chevrier A et al (2015) Interspecies comparison of subchondral bone properties important for cartilage repair. J Orthop Res 33(1):63–70PubMedCrossRefGoogle Scholar
  70. 70.
    Qiu YS et al (2003) Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthr Cartil 11(11):810–820PubMedCrossRefGoogle Scholar
  71. 71.
    Gao J et al (2002) Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng 8(5):827–837PubMedCrossRefGoogle Scholar
  72. 72.
    Kaweblum M et al (1994) Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit. J Orthop Res 12(5):747–749PubMedCrossRefGoogle Scholar
  73. 73.
    Kon E et al (2011) Platelet-rich plasma (PRP) to treat sports injuries: evidence to support its use. Knee Surg Sports Traumatol Arthrosc 19(4):516–527PubMedCrossRefGoogle Scholar
  74. 74.
    Mahmoud EE et al (2017) Role of mesenchymal stem cells densities when injected as suspension in joints with osteochondral defects. Cartilage
  75. 75.
    Ishihara K et al (2014) Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res 9:98PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liu S et al (2017) Repair of osteochondral defects using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in a rabbit model. Biomed Res Int 2017:8760383PubMedPubMedCentralGoogle Scholar
  77. 77.
    Dashtdar H et al (2011) A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res 29(9):1336–1342PubMedCrossRefGoogle Scholar
  78. 78.
    Mahmoud EE et al (2016) Cell magnetic targeting system for repair of severe chronic osteochondral defect in a rabbit model. Cell Transplant 25(6):1073–1083PubMedCrossRefGoogle Scholar
  79. 79.
    Li H et al (2016) Osteochondral repair with synovial membrane-derived mesenchymal stem cells. Mol Med Rep 13(3):2071–2077PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mehrabani D et al (2015) The healing effect of adipose-derived mesenchymal stem cells in full-thickness femoral articular cartilage defects of rabbit. Int J Organ Transplant Med 6(4):165–175PubMedPubMedCentralGoogle Scholar
  81. 81.
    Du D et al (2015) Repairing osteochondral defects of critical size using multiple costal grafts: an experimental study. Cartilage 6(4):241–251PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Sasaki T et al (2017) The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism. Bone Joint Res 6:123–131PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wu CC et al (2017) Intra-articular injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: an in vivo study in rabbits. J Biomed Mater Res B Appl Biomater 105(6):1536–1543PubMedCrossRefGoogle Scholar
  84. 84.
    Maruyama M et al (2017) Comparison of the effects of osteochondral autograft transplantation with platelet-rich plasma or platelet-rich fibrin on osteochondral defects in a rabbit model. Am J Sports Med 45(14):3280–3288PubMedCrossRefGoogle Scholar
  85. 85.
    Boakye LA et al (2015) Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model. World J Orthop 6(11):961–969PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Altan E et al (2014) The effect of platelet-rich plasma on osteochondral defects treated with mosaicplasty. Int Orthop 38(6):1321–1328PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Smyth NA et al (2016) Platelet-rich plasma may improve osteochondral donor site healing in a rabbit model. Cartilage 7(1):104–111PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bahmanpour S et al (2016) Effects of platelet-rich plasma & platelet-rich fibrin with and without stromal cell-derived factor-1 on repairing full-thickness cartilage defects in knees of rabbits. Iran J Med Sci 41(6):507–517Google Scholar
  89. 89.
    Danieli MV et al (2014) Treatment of osteochondral injuries with platelet gel. Clinics 69(10):694–698PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gugjoo MB et al (2017) Mesenchymal stem cells with IGF-1 and TGF- beta1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother 93:1165–1174PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Han F et al (2015) Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. J Mater Sci Mater Med 26(4):160PubMedCrossRefGoogle Scholar
  92. 92.
    Chen P et al (2015) Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials 39:114–123PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mazaki T et al (2014) A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci Rep 4:4457PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wang CC et al (2016) Expandable scaffold improves integration of tissue-engineered cartilage: an in vivo study in a rabbit model. Tissue Eng Part A 22(11–12):873–884PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang W et al (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057PubMedCrossRefGoogle Scholar
  96. 96.
    Duan P et al (2014) The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J Biomed Mater Res A 102(1):180–192PubMedCrossRefGoogle Scholar
  97. 97.
    Vayas R et al (2017) Evaluation of the effectiveness of a bMSC and BMP-2 polymeric trilayer system in cartilage repair. Biomed Mater 12(4):045001PubMedCrossRefGoogle Scholar
  98. 98.
    Han L et al (2017) Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J Mater Chem B 5:731CrossRefGoogle Scholar
  99. 99.
    Lu S et al (2014) Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35(31):8829–8839PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yan LP et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241PubMedCrossRefGoogle Scholar
  101. 101.
    Naskar D et al (2017) Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials 136:67–85PubMedCrossRefGoogle Scholar
  102. 102.
    Ruan SQ et al (2017) Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Int Orthop 41(9):1899–1908PubMedCrossRefGoogle Scholar
  103. 103.
    Shimomura K et al (2017) Comparison of 2 different formulations of artificial bone for a hybrid implant with a tissue-engineered construct derived from synovial mesenchymal stem cells: a study using a rabbit osteochondral defect model. Am J Sports Med 45(3):666–675PubMedCrossRefGoogle Scholar
  104. 104.
    Żylińska B et al (2017) Osteochondral repair using porous three-dimensional nanocomposite scaffolds in a rabbit model. In Vivo 31(5):895–903PubMedPubMedCentralGoogle Scholar
  105. 105.
    Du Y et al (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37–48PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wada S et al (2016) Hydroxyapatite-coated double network hydrogel directly bondable to the bone: biological and biomechanical evaluations of the bonding property in an osteochondral defect. Acta Biomater 44:125–134PubMedCrossRefGoogle Scholar
  107. 107.
    Higa K et al (2017) Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel. BMC Musculoskelet Disord 18(1):210PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wang C et al (2017) Cartilage oligomeric matrix protein improves in vivo cartilage regeneration and compression modulus by enhancing matrix assembly and synthesis. Colloids Surf B Biointerfaces 159:518–526PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alain da Silva Morais
    • 1
    • 2
    Email author
  • J. Miguel Oliveira
    • 1
    • 2
    • 3
  • Rui L. Reis
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and RegenerativeBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.The Discoveries Center for Regenerative and Precision MedicineHeadquarters at University of MinhoGuimarãesPortugal

Personalised recommendations