Skip to main content

Tissue Engineering Strategies for Osteochondral Repair

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1059)

Abstract

Tissue engineering strategies have been pushing forward several fields in the range of biomedical research. The musculoskeletal field is not an exception. In fact, tissue engineering has been a great asset in the development of new treatments for osteochondral lesions. Herein, we overview the recent developments in osteochondral tissue engineering. Currently, the treatments applied in a clinical scenario have shown some drawbacks given the difficulty in regenerating a fully functional hyaline cartilage. Among the different strategies designed for osteochondral regeneration, it is possible to identify cell-free strategies, scaffold-free strategies, and advanced strategies, where different materials are combined with cells. Cell-free strategies consist in the development of scaffolds in the attempt to better fulfill the requirements of the cartilage regeneration process. For that, different structures have been designed, from monolayers to multilayered structures, with the intent to mimic the osteochondral architecture. In the case of scaffold-free strategies, they took advantage on the extracellular matrix produced by cells. The last strategy relies in the development of new biomaterials capable of mimicking the extracellular matrix. This way, the cell growth, proliferation, and differentiation at the lesion site are expedited, exploiting the self-regenerative potential of cells and its interaction with biomolecules. Overall, despite the difficulties associated with each approach, tissue engineering has been proven a valuable tool in the regeneration of osteochondral lesions and together with the latest advances in the field, promises to revolutionize personalized therapies.

Keywords

  • Osteochondral regeneration
  • Cell-free strategies
  • Scaffold-free strategies
  • Biomaterials
  • Extracellular matrix mimicry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-76735-2_16
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-76735-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2
Fig. 16.3
Fig. 16.4
Fig. 16.5
Fig. 16.6

References

  1. Yan L-P et al (2015) Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng 1(4):183–200

    CrossRef  CAS  PubMed  Google Scholar 

  2. Panseri S et al (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 20(6):1182–1191

    CrossRef  PubMed  Google Scholar 

  3. Correia SI et al (2017) Posterior talar process as a suitable cell source for treatment of cartilage and osteochondral defects of the talus. J Tissue Eng Regen Med 11(7):1949–1962

    CrossRef  CAS  PubMed  Google Scholar 

  4. Espregueira-Mendes J et al (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20(6):1136–1142

    CrossRef  PubMed  Google Scholar 

  5. Kon E et al (2015) Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31(4):767–775

    CrossRef  PubMed  Google Scholar 

  6. Yang J et al (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14

    CrossRef  CAS  PubMed  Google Scholar 

  8. Wang W et al (2014) An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater 10(12):4983–4995

    CrossRef  CAS  PubMed  Google Scholar 

  9. Yan LP et al (2014) Silk fibroin/Nano-CaP bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:245–248

    CrossRef  CAS  Google Scholar 

  10. Perdisa F et al (2017) One-step treatment for patellar cartilage defects with a cell-free osteochondral scaffold: a prospective clinical and MRI evaluation. Am J Sports Med 45(7):1581–1588

    CrossRef  PubMed  Google Scholar 

  11. Levingstone TJ et al (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87:69–81

    CrossRef  CAS  PubMed  Google Scholar 

  12. Brix M et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632

    CrossRef  PubMed  Google Scholar 

  13. Verdonk P et al (2015) Treatment of osteochondral lesions in the knee using a cell-free scaffold. Bone Joint J 97-b(3):318–323

    CrossRef  CAS  PubMed  Google Scholar 

  14. Stadler N, Trieb K (2016) Osteochondritis dissecans of the medial femoral condyle : new cell-free scaffold as a treatment option. Orthopade 45(8):701–705

    CrossRef  CAS  PubMed  Google Scholar 

  15. Hindle P et al (2014) Autologous osteochondral mosaicplasty or TruFit™ plugs for cartilage repair. Knee Surg Sports Traumatol Arthrosc 22(6):1235–1240

    CrossRef  PubMed  Google Scholar 

  16. Kon E et al (2014) Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 1:10

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Chang NJ et al (2015) Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 28:128–137

    CrossRef  CAS  PubMed  Google Scholar 

  18. Sofu H et al (2017) Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy 33(1):209–216

    CrossRef  PubMed  Google Scholar 

  19. Fermor HL et al (2015) Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair. J Mater Sci Mater Med 26(5):186

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nogami M et al (2016) A human Amnion-derived extracellular matrix-coated cell-free scaffold for cartilage repair: in vitro and in vivo studies. Tissue Eng Part A 22(7–8):680–688

    CrossRef  CAS  PubMed  Google Scholar 

  21. Li H et al (2016) Osteochondral repair with synovial membrane-derived mesenchymal stem cells. Mol Med Rep 13(3):2071–2077

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  22. Itokazu M et al (2016) Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair: a preclinical study. Cartilage 7(4):361–372

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oda K et al (2014) Comparison of repair between cartilage and osteocartilage defects in rabbits using similarly manipulated scaffold-free cartilage-like constructs. J Orthop Sci 19(4):637–645

    CrossRef  PubMed  Google Scholar 

  24. Friedenstein AJ et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247

    CrossRef  CAS  PubMed  Google Scholar 

  25. Sridharan B et al (2017) In vivo evaluation of stem cell aggregates on osteochondral regeneration. J Orthop Res 35:1606–16

    CrossRef  CAS  PubMed  Google Scholar 

  26. Nansai R et al (2011) Surface morphology and stiffness of cartilage-like tissue repaired with a scaffold-free tissue engineered construct. J Biomed Sci Eng 6(1):40–48

    Google Scholar 

  27. Ishihara K et al (2014) Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res 9:98

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Murata D et al (2015) A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J Orthop Surg Res 10:35

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Whitney GA et al (2012) Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. Biores Open Access 1(4):157–165

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shimomura K et al (2014) Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part A 20(17–18):2291–2304

    CrossRef  CAS  PubMed  Google Scholar 

  31. Oliveira JM et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137

    CrossRef  CAS  PubMed  Google Scholar 

  32. Yan LP et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241

    CrossRef  CAS  PubMed  Google Scholar 

  33. Grassel S, Lorenz J (2014) Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells. Curr Rheumatol Rep 16(10):452

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    CrossRef  CAS  Google Scholar 

  35. Radhakrishnan J et al (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules 18(1):1–26

    CrossRef  CAS  PubMed  Google Scholar 

  36. Lai JH et al (2013) Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Sci Rep 3:3553

    CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Cui X et al (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bichara DA et al (2014) Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Biomed Mater 9(4):045012

    CrossRef  CAS  PubMed  Google Scholar 

  39. de Girolamo L et al (2015) Repair of osteochondral defects in the minipig model by OPF hydrogel loaded with adipose-derived mesenchymal stem cells. Regen Med 10(2):135–151

    CrossRef  CAS  PubMed  Google Scholar 

  40. Inagaki Y et al (2014) Effects of culture on PAMPS/PDMAAm double-network gel on chondrogenic differentiation of mouse C3H10T1/2 cells: in vitro experimental study. BMC Musculoskelet Disord 15:320

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zeng L et al (2014) Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. Mater Sci Eng C 34:168–175

    CrossRef  CAS  Google Scholar 

  42. Gothard D et al (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS One 10(12):e0145080

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fonseca KB et al (2014) Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules 15(1):380–390

    CrossRef  CAS  PubMed  Google Scholar 

  44. Zeng Q et al (2014) Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J Biomed Mater Res B Appl Biomater 102(1):42–51

    CrossRef  CAS  PubMed  Google Scholar 

  45. Choi B et al (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6(22):20110–20121

    CrossRef  CAS  PubMed  Google Scholar 

  46. Martins EA et al (2014) Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach. BMC Vet Res 10:197

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boyer C et al (2017) Si-HPMC/Si-Chitosan hybrid hydrogel for cartilage regenerative medicine: from in vitro to in vivo assessments in nude mice and canine model of osteochondral defects. Osteoarthr Cartil 25(Supplement 1):S77

    CrossRef  Google Scholar 

  48. Yuan T et al (2014) Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 102(2):337–344

    CrossRef  CAS  PubMed  Google Scholar 

  49. Mohan N et al (2017) Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol 104:1936–1945

    CrossRef  CAS  PubMed  Google Scholar 

  50. Parmar PA et al (2015) Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 54:213–225

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chao P-HG et al (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 95(1):84–90

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parkes M et al (2015) Tribology-optimised silk protein hydrogels for articular cartilage repair. Tribol Int 89:9–18

    CrossRef  CAS  Google Scholar 

  53. Yodmuang S et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36

    CrossRef  CAS  PubMed  Google Scholar 

  54. Wu J et al (2016) Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. J Mech Behav Biomed Mater 64:161–172

    CrossRef  CAS  PubMed  Google Scholar 

  55. Ming J et al (2015) Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth. Mater Sci Eng C 51:287–293

    CrossRef  CAS  Google Scholar 

  56. Fedorovich NE et al (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44

    CrossRef  CAS  PubMed  Google Scholar 

  57. Markstedt K et al (2015) 3D bioprinting human chondrocytes with Nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496

    CrossRef  CAS  PubMed  Google Scholar 

  58. Holmes B et al (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27(6):064001–064001

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ren X et al (2016) Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 17:301

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the funds obtained through the Nanotech4als (ENMed/0008/2015), HierarchiTech (M-ERA-NET/0001/2014), and FROnTHERA (NORTE-01-0145-FEDER-0000232) projects. FRM acknowledges the Portuguese Foundation for Science and Technology (FCT) for her postdoc grant (SFRH/BPD/117492/2016); MRC acknowledges the Doctoral Program financed by Programa Operacional Regional do Norte, Fundo Social Europeu, Norte 2020 for her PhD grant (NORTE-08-5369-FSE-000044 TERM&SC); and JMO thanks FCT for the distinction attributed under the Investigator FCT program (IF/01285/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Raquel Maia or Mariana R. Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Maia, F.R., Carvalho, M.R., Oliveira, J.M., Reis, R.L. (2018). Tissue Engineering Strategies for Osteochondral Repair. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_16

Download citation