Tissue Engineering Strategies for Osteochondral Repair

  • F. Raquel MaiaEmail author
  • Mariana R. CarvalhoEmail author
  • J. Miguel Oliveira
  • Rui L. Reis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


Tissue engineering strategies have been pushing forward several fields in the range of biomedical research. The musculoskeletal field is not an exception. In fact, tissue engineering has been a great asset in the development of new treatments for osteochondral lesions. Herein, we overview the recent developments in osteochondral tissue engineering. Currently, the treatments applied in a clinical scenario have shown some drawbacks given the difficulty in regenerating a fully functional hyaline cartilage. Among the different strategies designed for osteochondral regeneration, it is possible to identify cell-free strategies, scaffold-free strategies, and advanced strategies, where different materials are combined with cells. Cell-free strategies consist in the development of scaffolds in the attempt to better fulfill the requirements of the cartilage regeneration process. For that, different structures have been designed, from monolayers to multilayered structures, with the intent to mimic the osteochondral architecture. In the case of scaffold-free strategies, they took advantage on the extracellular matrix produced by cells. The last strategy relies in the development of new biomaterials capable of mimicking the extracellular matrix. This way, the cell growth, proliferation, and differentiation at the lesion site are expedited, exploiting the self-regenerative potential of cells and its interaction with biomolecules. Overall, despite the difficulties associated with each approach, tissue engineering has been proven a valuable tool in the regeneration of osteochondral lesions and together with the latest advances in the field, promises to revolutionize personalized therapies.


Osteochondral regeneration Cell-free strategies Scaffold-free strategies Biomaterials Extracellular matrix mimicry 



The authors thank the funds obtained through the Nanotech4als (ENMed/0008/2015), HierarchiTech (M-ERA-NET/0001/2014), and FROnTHERA (NORTE-01-0145-FEDER-0000232) projects. FRM acknowledges the Portuguese Foundation for Science and Technology (FCT) for her postdoc grant (SFRH/BPD/117492/2016); MRC acknowledges the Doctoral Program financed by Programa Operacional Regional do Norte, Fundo Social Europeu, Norte 2020 for her PhD grant (NORTE-08-5369-FSE-000044 TERM&SC); and JMO thanks FCT for the distinction attributed under the Investigator FCT program (IF/01285/2015).


  1. 1.
    Yan L-P et al (2015) Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng 1(4):183–200CrossRefGoogle Scholar
  2. 2.
    Panseri S et al (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 20(6):1182–1191CrossRefPubMedGoogle Scholar
  3. 3.
    Correia SI et al (2017) Posterior talar process as a suitable cell source for treatment of cartilage and osteochondral defects of the talus. J Tissue Eng Regen Med 11(7):1949–1962CrossRefPubMedGoogle Scholar
  4. 4.
    Espregueira-Mendes J et al (2012) Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions. Knee Surg Sports Traumatol Arthrosc 20(6):1136–1142CrossRefPubMedGoogle Scholar
  5. 5.
    Kon E et al (2015) Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31(4):767–775CrossRefPubMedGoogle Scholar
  6. 6.
    Yang J et al (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14CrossRefGoogle Scholar
  8. 8.
    Wang W et al (2014) An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater 10(12):4983–4995CrossRefPubMedGoogle Scholar
  9. 9.
    Yan LP et al (2014) Silk fibroin/Nano-CaP bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:245–248CrossRefGoogle Scholar
  10. 10.
    Perdisa F et al (2017) One-step treatment for patellar cartilage defects with a cell-free osteochondral scaffold: a prospective clinical and MRI evaluation. Am J Sports Med 45(7):1581–1588CrossRefPubMedGoogle Scholar
  11. 11.
    Levingstone TJ et al (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87:69–81CrossRefPubMedGoogle Scholar
  12. 12.
    Brix M et al (2016) Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. Int Orthop 40(3):625–632CrossRefPubMedGoogle Scholar
  13. 13.
    Verdonk P et al (2015) Treatment of osteochondral lesions in the knee using a cell-free scaffold. Bone Joint J 97-b(3):318–323CrossRefPubMedGoogle Scholar
  14. 14.
    Stadler N, Trieb K (2016) Osteochondritis dissecans of the medial femoral condyle : new cell-free scaffold as a treatment option. Orthopade 45(8):701–705CrossRefPubMedGoogle Scholar
  15. 15.
    Hindle P et al (2014) Autologous osteochondral mosaicplasty or TruFit™ plugs for cartilage repair. Knee Surg Sports Traumatol Arthrosc 22(6):1235–1240CrossRefPubMedGoogle Scholar
  16. 16.
    Kon E et al (2014) Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 1:10CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chang NJ et al (2015) Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 28:128–137CrossRefPubMedGoogle Scholar
  18. 18.
    Sofu H et al (2017) Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy 33(1):209–216CrossRefPubMedGoogle Scholar
  19. 19.
    Fermor HL et al (2015) Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair. J Mater Sci Mater Med 26(5):186CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nogami M et al (2016) A human Amnion-derived extracellular matrix-coated cell-free scaffold for cartilage repair: in vitro and in vivo studies. Tissue Eng Part A 22(7–8):680–688CrossRefPubMedGoogle Scholar
  21. 21.
    Li H et al (2016) Osteochondral repair with synovial membrane-derived mesenchymal stem cells. Mol Med Rep 13(3):2071–2077CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Itokazu M et al (2016) Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair: a preclinical study. Cartilage 7(4):361–372CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Oda K et al (2014) Comparison of repair between cartilage and osteocartilage defects in rabbits using similarly manipulated scaffold-free cartilage-like constructs. J Orthop Sci 19(4):637–645CrossRefPubMedGoogle Scholar
  24. 24.
    Friedenstein AJ et al (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMedGoogle Scholar
  25. 25.
    Sridharan B et al (2017) In vivo evaluation of stem cell aggregates on osteochondral regeneration. J Orthop Res 35:1606–16CrossRefPubMedGoogle Scholar
  26. 26.
    Nansai R et al (2011) Surface morphology and stiffness of cartilage-like tissue repaired with a scaffold-free tissue engineered construct. J Biomed Sci Eng 6(1):40–48Google Scholar
  27. 27.
    Ishihara K et al (2014) Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res 9:98CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Murata D et al (2015) A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. J Orthop Surg Res 10:35CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Whitney GA et al (2012) Methods for producing scaffold-free engineered cartilage sheets from auricular and articular chondrocyte cell sources and attachment to porous tantalum. Biores Open Access 1(4):157–165CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shimomura K et al (2014) Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng Part A 20(17–18):2291–2304CrossRefPubMedGoogle Scholar
  31. 31.
    Oliveira JM et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137CrossRefPubMedGoogle Scholar
  32. 32.
    Yan LP et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241CrossRefPubMedGoogle Scholar
  33. 33.
    Grassel S, Lorenz J (2014) Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells. Curr Rheumatol Rep 16(10):452CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  35. 35.
    Radhakrishnan J et al (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to osteochondral tissue engineering. Biomacromolecules 18(1):1–26CrossRefPubMedGoogle Scholar
  36. 36.
    Lai JH et al (2013) Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Sci Rep 3:3553CrossRefPubMedGoogle Scholar
  37. 37.
    Cui X et al (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bichara DA et al (2014) Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel. Biomed Mater 9(4):045012CrossRefPubMedGoogle Scholar
  39. 39.
    de Girolamo L et al (2015) Repair of osteochondral defects in the minipig model by OPF hydrogel loaded with adipose-derived mesenchymal stem cells. Regen Med 10(2):135–151CrossRefPubMedGoogle Scholar
  40. 40.
    Inagaki Y et al (2014) Effects of culture on PAMPS/PDMAAm double-network gel on chondrogenic differentiation of mouse C3H10T1/2 cells: in vitro experimental study. BMC Musculoskelet Disord 15:320CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zeng L et al (2014) Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. Mater Sci Eng C 34:168–175CrossRefGoogle Scholar
  42. 42.
    Gothard D et al (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS One 10(12):e0145080CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fonseca KB et al (2014) Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules 15(1):380–390CrossRefPubMedGoogle Scholar
  44. 44.
    Zeng Q et al (2014) Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J Biomed Mater Res B Appl Biomater 102(1):42–51CrossRefPubMedGoogle Scholar
  45. 45.
    Choi B et al (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6(22):20110–20121CrossRefPubMedGoogle Scholar
  46. 46.
    Martins EA et al (2014) Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach. BMC Vet Res 10:197CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Boyer C et al (2017) Si-HPMC/Si-Chitosan hybrid hydrogel for cartilage regenerative medicine: from in vitro to in vivo assessments in nude mice and canine model of osteochondral defects. Osteoarthr Cartil 25(Supplement 1):S77CrossRefGoogle Scholar
  48. 48.
    Yuan T et al (2014) Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 102(2):337–344CrossRefPubMedGoogle Scholar
  49. 49.
    Mohan N et al (2017) Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol 104:1936–1945CrossRefPubMedGoogle Scholar
  50. 50.
    Parmar PA et al (2015) Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 54:213–225CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chao P-HG et al (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 95(1):84–90CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Parkes M et al (2015) Tribology-optimised silk protein hydrogels for articular cartilage repair. Tribol Int 89:9–18CrossRefGoogle Scholar
  53. 53.
    Yodmuang S et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36CrossRefPubMedGoogle Scholar
  54. 54.
    Wu J et al (2016) Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels. J Mech Behav Biomed Mater 64:161–172CrossRefPubMedGoogle Scholar
  55. 55.
    Ming J et al (2015) Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth. Mater Sci Eng C 51:287–293CrossRefGoogle Scholar
  56. 56.
    Fedorovich NE et al (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44CrossRefGoogle Scholar
  57. 57.
    Markstedt K et al (2015) 3D bioprinting human chondrocytes with Nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496CrossRefGoogle Scholar
  58. 58.
    Holmes B et al (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27(6):064001–064001CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ren X et al (2016) Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 17:301CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.3B’s Research Group – Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of MinhoGuimarãesPortugal

Personalised recommendations