Osteochondral Angiogenesis and Promoted Vascularization: New Therapeutic Target

  • Luis García-FernándezEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1059)


The control of the different angiogenic process is an important point in osteochondral regeneration. Angiogenesis is a prerequisite for osteogenesis in vivo; insufficient neovascularization of bone constructs after scaffold implantation resulted in hypoxia and cellular necrosis. Otherwise, angiogenesis must be avoided in chondrogenesis; vascularization of the cartilage contributes to structural damage and pain. Finding a balance between these processes is important to design a successful treatment for osteochondral regeneration. This chapter shows the most important advances in the control of angiogenic process for the treatment of osteochondral diseases focused on the administration of pro- or anti-angiogenic factor and the design of the scaffold.


Angiogenic factors Neovascularization Osteochondral angiogenesis Biomaterials Osteochondral regeneration 


  1. 1.
    Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. 6:162.
  2. 2.
    O'Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev 17(6):389–392. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Meachim G, Stockwell RA (1979). The matrix. In M.A.R. Freeman (Ed.), Adult Articular Cartilage (Second edition, pp.1–67) Pitman medicalGoogle Scholar
  4. 4.
    Franzen A, Inerot S, Hejderup SO, Heinegard D (1981) Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 195(3):535–543CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kawcak CE, CW MI, Norrdin RW, Park RD, James SP (2001) The role of subchondral bone in joint disease: a review. Equine Vet J 33(2):120–126CrossRefPubMedGoogle Scholar
  6. 6.
    Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    García-Fernández L, Halstenberg S, Unger RE, Aguilar MR, Kirkpatrick CJ, San Román J (2010) Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials 31(31):7863–7872. CrossRefPubMedGoogle Scholar
  8. 8.
    Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73. CrossRefPubMedGoogle Scholar
  9. 9.
    Franses RE, McWilliams DF, Mapp PI, Walsh DA (2010) Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthr Cartil 18(4):563–571. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721. CrossRefPubMedGoogle Scholar
  11. 11.
    Hayami T, Funaki H, Yaoeda K, Mitui K, Yamagiwa H, Tokunaga K, Hatano H, Kondo J, Hiraki Y, Yamamoto T, Duong LT, Endo N (2003) Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol 30(10):2207–2217PubMedGoogle Scholar
  12. 12.
    Deng B, Chen C, Gong X, Guo L, Chen H, Yin L, Yang L, Wang F (2017) Chondromodulin-I expression and correlation with angiogenesis in human osteoarthritic cartilage. Mol Med Rep 16(2):2142–2148. CrossRefPubMedGoogle Scholar
  13. 13.
    Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24(3):297–310. CrossRefPubMedGoogle Scholar
  14. 14.
    Athanasiou KA, Darling EM, Hu JC (2009) Articular cartilage tissue engineering. Synth Lect Tissue Eng 1(1):1–182. CrossRefGoogle Scholar
  15. 15.
    Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y, Kasper FK, Mikos AG (2010) Effects of TGF-beta3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xing S-C, Liu Y, Feng Y, Jiang C, Hu Y-Q, Sun W, Wang X-H, Wei Z-Y, Qi M, Liu J, Zhai L-J, Wang Z-Q (2015) Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering. Cell Biol Int 39(3):300–309. CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang X, Prasadam I, Fang W, Crawford R, Xiao Y (2016) Chondromodulin-1 ameliorates osteoarthritis progression by inhibiting HIF-2α activity. Osteoarthr Cartil 24(11):1970–1980. CrossRefPubMedGoogle Scholar
  18. 18.
    Feng Y, Wu YP, Zhu XD, Zhang YH, Ma QJ (2005) Endostatin promotes the anabolic program of rabbit chondrocyte. Cell Res 15(3):201–206. CrossRefPubMedGoogle Scholar
  19. 19.
    O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285. CrossRefPubMedGoogle Scholar
  20. 20.
    Jeng L, Olsen BR, Spector M (2012) Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 8(6):2203–2212. CrossRefPubMedGoogle Scholar
  21. 21.
    Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A, Li G, Fu FH, Huard J (2009) Blocking VEGF with sFlt1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 60(1):155–165. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marsano A, Medeiros da Cunha CM, Ghanaati S, Gueven S, Centola M, Tsaryk R, Barbeck M, Stuedle C, Barbero A, Helmrich U, Schaeren S, Kirkpatrick JC, Banfi A, Martin I (2016) Spontaneous in vivo Chondrogenesis of bone marrow-derived mesenchymal progenitor cells by blocking vascular endothelial growth factor signaling. Stem Cells Transl Med 5(12):1730–1738. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mulligan RC (1993) The basic science of gene therapy. Science (New York, NY) 260(5110):926–932CrossRefGoogle Scholar
  24. 24.
    Peniche H, Reyes-Ortega F, Aguilar MR, Rodríguez G, Abradelo C, García-Fernández L, Peniche C, Román JS (2013) Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles. Macromol Biosci 13(11):1556–1567. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Centola M, Abbruzzese F, Scotti C, Barbero A, Vadalà G, Denaro V, Martin I, Trombetta M, Rainer A, Marsano A (2013) Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Eng A 19(17–18):1960–1971. CrossRefGoogle Scholar
  26. 26.
    Firsching-Hauck A, Nickel P, Yahya C, Wandt C, Kulik R, Simon N, Zink M, Nehls V, Allolio B (2000) Angiostatic effects of suramin analogs in vitro. Anti-Cancer Drugs 11(2):69–77CrossRefPubMedGoogle Scholar
  27. 27.
    Hunziker EB, Driesang IMK (2003) Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthr Cartil 11(5):320–327. CrossRefPubMedGoogle Scholar
  28. 28.
    Yousefi A-M, Hoque ME, Prasad RGSV, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 103(7):2460–2481. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deckers MML, Karperien M, Van Der Bent C, Yamashita T, Papapoulos SE, Löwik CWGM (2000) Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141(5):1667–1674. CrossRefPubMedGoogle Scholar
  30. 30.
    Mayr-wohlfart U, Waltenberger J, Hausser H, Kessler S, Günther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30(3):472–477. CrossRefPubMedGoogle Scholar
  31. 31.
    Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 199(1):380–386. CrossRefPubMedGoogle Scholar
  32. 32.
    Duan X, Murata Y, Liu Y, Nicolae C, Olsen BR, Berendsen AD (2015) Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development. Development 142(11):1984CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zavan B, Ferroni L, Gardin C, Sivolella S, Piattelli A, Mijiritsky E (2017) Release of VEGF from dental implant improves Osteogenetic process: preliminary in vitro tests. Materials 10(9). CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21(5):735–744. CrossRefPubMedGoogle Scholar
  35. 35.
    García JR, Clark AY, García AJ (2016) Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A 104(4):889–900. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kasten P, Beverungen M, Lorenz H, Wieland J, Fehr M, Geiger F (2012) Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect. Cells Tissues Organs 196(6):523–533. CrossRefPubMedGoogle Scholar
  37. 37.
    Sato Y, Shimada T, Takaki R (1991) Autocrinological role of basic fibroblast growth factor on tube formation of vascular endothelial cells in vitro. Biochem Biophys Res Commun 180(2):1098–1102. CrossRefPubMedGoogle Scholar
  38. 38.
    Globus RK, Patterson-Buckendahl P, Gospodarowicz D (1988) Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 123(1):98–105. CrossRefPubMedGoogle Scholar
  39. 39.
    Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65A(4):489–497. CrossRefGoogle Scholar
  40. 40.
    Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113(4):516–527. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    von Degenfeld G, Banfi A, Springer ML, Wagner RA, Jacobi J, Ozawa CR, Merchant MJ, Cooke JP, Blau HM (2006) Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J: Off Publ Fed Am Soc Exp Biol 20(14):2657–2659. CrossRefGoogle Scholar
  42. 42.
    Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotech 19(11):1029–1034CrossRefGoogle Scholar
  43. 43.
    Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24(2):258–264. CrossRefPubMedGoogle Scholar
  44. 44.
    Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271. CrossRefPubMedGoogle Scholar
  45. 45.
    Elia R, Fuegy PW, VanDelden A, Firpo MA, Prestwich GD, Peattie RA (2010) Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31(17):4630–4638. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30(11):2122–2131. CrossRefPubMedGoogle Scholar
  47. 47.
    Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28(6):1123–1131. CrossRefPubMedGoogle Scholar
  48. 48.
    Zieris A, Prokoph S, Levental KR, Welzel PB, Grimmer M, Freudenberg U, Werner C (2010) FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials 31(31):7985–7994. CrossRefPubMedGoogle Scholar
  49. 49.
    Li B, Wang H, Qiu G, Su X, Wu Z (2016) Synergistic effects of vascular endothelial growth factor on bone morphogenetic proteins induced bone formation in vivo: influencing factors and future research directions. Biomed Res Int 2016:2869572. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S (2010) Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomater 6(10):4167–4174. CrossRefPubMedGoogle Scholar
  51. 51.
    Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89(9):2675–2688. CrossRefGoogle Scholar
  52. 52.
    Rojo L, Radley-Searle S, Fernandez-Gutierrez M, Rodriguez-Lorenzo LM, Abradelo C, Deb S, San Roman J (2015) The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity. J Mater Chem B 3(13):2708–2713. CrossRefGoogle Scholar
  53. 53.
    Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11(2):99–110PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tarafder S, Dernell WS, Bandyopadhyay A, Bose S (2015) SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater 103(3):679–690. CrossRefPubMedGoogle Scholar
  55. 55.
    Wu F, Su J, Wei J, Guo H, Liu C (2008) Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Biomed Mater (Bristol, England) 3(4):044105. CrossRefGoogle Scholar
  56. 56.
    Fielding G, Bose S (2013) SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater 9(11):9137–9148. CrossRefGoogle Scholar
  57. 57.
    Bose S, Tarafder S, Bandyopadhyay A (2017) Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed Eng 45(1):261–272. CrossRefPubMedGoogle Scholar
  58. 58.
    Dashnyam K, El-Fiqi A, Buitrago JO, Perez RA, Knowles JC, Kim H-W (2017) A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J Tissue Eng 8:2041731417707339. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G, Chang J (2013) Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014. CrossRefPubMedGoogle Scholar
  60. 60.
    Birgani ZT, Gharraee N, Malhotra A, van Blitterswijk CA, Habibovic P (2016) Combinatorial incorporation of fluoride and cobalt ions into calcium phosphates to stimulate osteogenesis and angiogenesis. Biomed Mater (Bristol, England) 11 (1):015020. doi: CrossRefPubMedGoogle Scholar
  61. 61.
    Zhou J, Zhao L (2016) Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Sci Rep 6:29069. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Perez RA, Kim JH, Buitrago JO, Wall IB, Kim HW (2015) Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater 23:295–308. CrossRefPubMedGoogle Scholar
  63. 63.
    Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 28(16):1797–1825. CrossRefPubMedGoogle Scholar
  64. 64.
    Lopa S, Madry H (2014) Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A 20(15–16):2052–2076. CrossRefPubMedGoogle Scholar
  65. 65.
    Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C 70(Part 1):101–111. CrossRefGoogle Scholar
  66. 66.
    Hunziker EB, Driesang IM, Saager C (2001) Structural barrier principle for growth factor-based articular cartilage repair. Clin Orthop Relat Res 391 Suppl:S182–S189CrossRefGoogle Scholar
  67. 67.
    Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004. CrossRefPubMedGoogle Scholar
  68. 68.
    Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O’Brien FJ (2016) Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater 32(Supplement C):149–160. CrossRefPubMedGoogle Scholar
  69. 69.
    Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT (2005) Regeneration of articular cartilage – evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr Cartil 13(9):798–807. CrossRefPubMedGoogle Scholar
  70. 70.
    Levingstone TJ, Ramesh A, Brady RT, Brama PAJ, Kearney C, Gleeson JP, O'Brien FJ (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87(Supplement C):69–81. CrossRefPubMedGoogle Scholar
  71. 71.
    Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Cao L, Mooney DJ (2007) Spatiotemporal control over growth factor signaling for therapeutic neovascularization. Adv Drug Deliv Rev 59(13):1340–1350. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855. CrossRefPubMedGoogle Scholar
  74. 74.
    Mohan N, Gupta V, Sridharan BP, Mellott AJ, Easley JT, Palmer RH, Galbraith RA, Key VH, Berkland CJ, Detamore MS (2015) Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. Regen Med 10(6):709–728. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Samorezov JE, Alsberg E (2015) Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 84:45–67. CrossRefPubMedGoogle Scholar
  76. 76.
    Wylie RG, Shoichet MS (2011) Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules 12(10):3789–3796. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC)MadridSpain

Personalised recommendations