Bioceramics for Osteochondral Tissue Engineering and Regeneration

  • Sandra PinaEmail author
  • Rita Rebelo
  • Vitor Manuel Correlo
  • J. Miguel Oliveira
  • Rui L. Reis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1058)


Considerable advances in tissue engineering and regeneration have been accomplished over the last decade. Bioceramics have been developed to repair, reconstruct, and substitute diseased parts of the body and to promote tissue healing as an alternative to metallic implants. Applications embrace hip, knee, and ligament repair and replacement, maxillofacial reconstruction and augmentation, spinal fusion, bone filler, and repair of periodontal diseases. Bioceramics are well-known for their superior wear resistance, high stiffness, resistance to oxidation, and low coefficient of friction. These specially designed biomaterials are grouped in natural bioceramics (e.g., coral-derived apatites), and synthetic bioceramics, namely bioinert ceramics (e.g., alumina and zirconia), bioactive glasses and glass ceramics, and bioresorbable calcium phosphates-based materials. Physicochemical, mechanical, and biological properties, as well as bioceramics applications in diverse fields of tissue engineering are presented herein. Ongoing clinical trials using bioceramics in osteochondral tissue are also considered. Based on the stringent requirements for clinical applications, prospects for the development of advanced functional bioceramics for tissue engineering are highlighted for the future.


Bioceramics Natural and synthetic bioceramics Calcium phosphates Clinical trials Osteochondral regeneration 



The authors acknowledge the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Also, H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. The financial support from the Portuguese Foundation for Science and Technology for the funds provided under the program Investigador FCT 2012, 2014, and 2015 (IF/00423/2012, IF/01214/2014, and IF/01285/2015) is also greatly acknowledged.


  1. 1.
    Salinas AJ, Vallet-Regi M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv 3(28):11116–11131. CrossRefGoogle Scholar
  2. 2.
    Hasan MS, Ahmed I, Parsons AJ, Rudd CD, Walker GS, Scotchford CA (2013) Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix. J Biomater Appl 28(3):354–366. CrossRefPubMedGoogle Scholar
  3. 3.
    Pina S, Oliveira JM, Reis RL (2015) Natural-based Nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yan LP, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, Mano JF, Oliveira JM, Oliveira AL, Reis RL (2013) Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine (Lond) 8(3):359–378. CrossRefGoogle Scholar
  5. 5.
    Silva TH, Alves A, Ferreira BM, Oliveira JM, Reys LL, Ferreira RJF, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57(5):276–306. CrossRefGoogle Scholar
  6. 6.
    Oliveira J, Costa S, Leonor I, Malafaya P, Mano J, Reis R (2009) Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative "autocatalytic" electroless coprecipitation route. J Biomed Mater Res A 88:470–480CrossRefGoogle Scholar
  7. 7.
    Oliveira JM, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL, Ohgushi H Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone 46(5):1424–1435. doi: CrossRefPubMedGoogle Scholar
  8. 8.
    Fomin A, Barinov S, Ievlev V, Smirnov V, Mikhailov B, Belonogov E, Drozdova N (2008) Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Doklady Chem 418:22–25CrossRefGoogle Scholar
  9. 9.
    Pina S, Ferreira J (2010) Brushite-forming Mg-, Zn- and Sr-substituted bone cements for clinical applications. Materials 3:519–535CrossRefGoogle Scholar
  10. 10.
    Tomoaia G, Mocanu A, Vida-Simiti I, Jumate N, Bobos LD, Soritau O, Tomoaia-Cotisel M (2014) Silicon effect on the composition and structure of nanocalcium phosphates: in vitro biocompatibility to human osteoblasts. Mater Sci Eng C Mater Biol Appl 37:37–47. CrossRefPubMedGoogle Scholar
  11. 11.
    Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem 15(15):1509–1516CrossRefGoogle Scholar
  12. 12.
    Kose N, Otuzbir A, Peksen C, Kiremitci A, Dogan A (2013) A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance. Clin Orthop Relat Res 471(8):2532–2539. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    LeGeros RZ, Kijkowska R, Bautista C, Retino M, LeGeros JP (1996) Magnesium incorporation in apatites: effect of CO3 and F. J Dent Res 75:60–60Google Scholar
  14. 14.
    Mestres G, Le Van C, Ginebra M-P (2012) Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response. Acta Biomater 8(3):1169–1179. CrossRefPubMedGoogle Scholar
  15. 15.
    Pina S, Vieira SI, Rego P, Torres PMC, Goetz-Neunhoeffer F, Neubauer J, da Cruz e Silva OAB, da Cruz e Silva EF, Ferreira JMF (2010) Biological responses of brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. Eur Cells Mater (in press) 20:162–177Google Scholar
  16. 16.
    Green DW, Ben-Nissan B, Yoon KS, Milthorpe B, Jung H-S (2017) Natural and synthetic coral biomineralization for human bone revitalization. Trends Biotechnol 35(1):43-54. doi:10.1016/j.tibtech.2016.10.003CrossRefPubMedGoogle Scholar
  17. 17.
    Oliveira JM, Grech JMR, Leonor IB, Mano JF, Reis RL (2007) Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Mater Lett 61:3495–3499CrossRefGoogle Scholar
  18. 18.
    Correlo VM, Oliveira JM, Mano JF, Neves NM, Reis RL (2011) Chapter 32 - Natural origin materials for bone tissue engineering—properties, processing, and performance A2 - Atala, Anthony. In: Lanza R, Thomson JA, Nerem R (eds) Principles of regenerative medicine (second edition). Academic, San Diego, pp 557–586. doi: CrossRefGoogle Scholar
  19. 19.
    Clarke SA, Walsh P, Maggs CA, Buchanan F (2011) Designs from the deep: marine organisms for bone tissue engineering. Biotechnol Adv 29(6):610–617. doi: CrossRefPubMedGoogle Scholar
  20. 20.
    Maccauro G, Iommetti PR, Raffaelli L, Manicone PF (2011) Alumina and zirconia ceramic for orthopaedic and dental devices. In: Biomaterials applications for nanomedicine. InTechGoogle Scholar
  21. 21.
    Ghaemi MH, Reichert S, Krupa A, Sawczak M, Zykova A, Lobach K, Sayenko S, Svitlychnyi Y (2017) Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications. Ceramics Int 43(13):9746-9752. doi: CrossRefGoogle Scholar
  22. 22.
    Kolos E, Ruys A (2015) Biomimetic coating on porous alumina for tissue engineering: characterisation by cell culture and confocal microscopy. Materials 8(6):3584CrossRefGoogle Scholar
  23. 23.
    Greenspan DC (2016) Glass and medicine: the Larry Hench story. Int J Appl Glas Sci 7(2):134–138. CrossRefGoogle Scholar
  24. 24.
    Biamino S, Fino P, Pavese M, Badini C (2006) Alumina–zirconia–yttria nanocomposites prepared by solution combustion synthesis. Ceram Int 32(5):509–513. CrossRefGoogle Scholar
  25. 25.
    Kurtz SM, Kocagöz S, Arnholt C, Huet R, Ueno M, Walter WL (2014) Advances in zirconia toughened alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater 31:107–116. CrossRefPubMedGoogle Scholar
  26. 26.
    Pieralli S, Kohal RJ, Jung RE, Vach K, Spies BC (2016) Clinical outcomes of zirconia dental implants: a systematic review. J Dent Res 96(1):38–46. CrossRefPubMedGoogle Scholar
  27. 27.
    Nakamura K, Adolfsson E, Milleding P, Kanno T, Örtengren U (2012) Influence of grain size and veneer firing process on the flexural strength of zirconia ceramics. Eur J Oral Sci 120(3):249–254. CrossRefPubMedGoogle Scholar
  28. 28.
    Benzaid R, Chevalier J, Saâdaoui M, Fantozzi G, Nawa M, Diaz LA, Torrecillas R (2008) Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials 29(27):3636–3641. CrossRefPubMedGoogle Scholar
  29. 29.
    Afzal A (2014) Implantable zirconia bioceramics for bone repair and replacement: a chronological review. Mater Express 4(1):1–12. CrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Rawlings RD (1993) Bioactive glasses and glass-ceramics. Clin Mater 14(2):155–179. CrossRefPubMedGoogle Scholar
  33. 33.
    Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lobel KD, Hench LL (1996) In-vitro protein interactions with a bioactive gel-glass. J Sol-Gel Sci Technol 7(1–2):69–76. CrossRefGoogle Scholar
  36. 36.
    Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16(2):199–207. CrossRefPubMedGoogle Scholar
  37. 37.
    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276(2):461–465. CrossRefPubMedGoogle Scholar
  38. 38.
    Hench LL (1998) Bioceramics. J Amer Ceram Soc 81:1705–1728CrossRefGoogle Scholar
  39. 39.
    Huang W, Day D, Kittiratanapiboon K, Rahaman M (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17(7):583–596. CrossRefPubMedGoogle Scholar
  40. 40.
    Leu A, Leach JK (2008) Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 25(5):1222–1229. CrossRefPubMedGoogle Scholar
  41. 41.
    Fu Q, Rahaman MN, Fu H, Liu X (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 95(1):164–171. CrossRefPubMedGoogle Scholar
  42. 42.
    Knowles JC (2003) Phosphate based glasses for biomedical applications. J Mater Chem 13(10):2395–2401. CrossRefGoogle Scholar
  43. 43.
    Xie Z, Cui X, Zhao C, Huang W, Wang J, Zhang C (2013) Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia Coli in a rabbit model. Antimicrob Agents Chemother 57(7):3293–3298. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y, Bal BS (2009) Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J Biomed Mater Res A 88A(2):392–400. CrossRefGoogle Scholar
  45. 45.
    Marikani A, Maheswaran A, Premanathan M, Amalraj L (2008) Synthesis and characterization of calcium phosphate based bioactive quaternary P2O5–CaO–Na2O–K2O glasses. J Non-Cryst Solids 354(33):3929–3934. CrossRefGoogle Scholar
  46. 46.
    Pickup DM, Newport RJ, Knowles JC (2010) Sol–gel phosphate-based glass for drug delivery applications. J Biomater Appl 26(5):613–622. CrossRefPubMedGoogle Scholar
  47. 47.
    Kashif I, Soliman AA, Sakr EM, Ratep A (2012) Effect of different conventional melt quenching technique on purity of lithium niobate (LiNbO3) nano crystal phase formed in lithium borate glass. Results Phys 2(0):207–211. CrossRefGoogle Scholar
  48. 48.
    Balamurugan A, Rebelo A, Kannan S, Ferreira JMF, Michel J, Balossier G, Rajeswari S (2007) Characterization and in vivo evaluation of sol–gel derived hydroxyapatite coatings on Ti6Al4V substrates. J Biomed Mater Res B Appl Biomater 81B(2):441–447. CrossRefGoogle Scholar
  49. 49.
    Brunner TJ, Stark WJ, Grass RN (2006) Glass and bioactive glass Nanopowders by flame synthesis. AIChE Annual Meeting, Hilton San FranciscoGoogle Scholar
  50. 50.
  51. 51.
    Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 31:37–47CrossRefGoogle Scholar
  52. 52.
    Dorozhkin S (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498CrossRefGoogle Scholar
  53. 53.
    Dorozhkin SV (2007) Calcium orthophosphates. J Mater Sci 42(4):1061–1095. CrossRefGoogle Scholar
  54. 54.
    Le Geros RZ, Le Geros JP (2003) Calcium phosphate bioceramics: past, present and future. Key Eng Mater 3:240–242Google Scholar
  55. 55.
    Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A 107(31):13614–13619. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Davison NL, Luo X, Schoenmaker T, Everts V, Yuan H, Barrère-de Groot F, de Bruijn JD (2014) Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo. Eur Cells Mater 27:281–297CrossRefGoogle Scholar
  57. 57.
    Bohner M (2001) Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J 10:114–121CrossRefGoogle Scholar
  58. 58.
    Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials 10(4):104. CrossRefGoogle Scholar
  59. 59.
    Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14(3):195–200CrossRefGoogle Scholar
  60. 60.
    Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF (2008) Ionic substitutions in biphasic hydroxyapatite and beta-tricalcium phosphate mixtures: structural analysis by rietveld refinement. J Am Ceramic Soc 91(1):1–12. doi: CrossRefGoogle Scholar
  61. 61.
    Kannan S, Lemos AF, Ferreira JMF (2006) Synthesis and mechanical performance of biological-like hydroxyapatites. Chem Mater 18(8):2181–2186CrossRefGoogle Scholar
  62. 62.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates, vol 18. Studies in inorganic chemistry. Elsevier, LondonGoogle Scholar
  63. 63.
    LeGeros RZ, LeGeros JP, Daculsi G, Kijkowska R (1995) Encyclopedia handbook of biomaterials and bioengineering, vol 2. Marcel Dekker, New YorkGoogle Scholar
  64. 64.
    Monma H, Goto M (1983) Behavior of the α-β phase transformation in tricalcium phosphate. Yohyo-Kyokai-Shi 91:473–475CrossRefGoogle Scholar
  65. 65.
    Yin X, Stott MJ, Rubio A (2003) Phys Rev B - Condens Matter Mater Phys 68:205Google Scholar
  66. 66.
    Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113(2):102–110CrossRefGoogle Scholar
  67. 67.
    Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomater 26:3587–3596CrossRefGoogle Scholar
  68. 68.
    Metzger DS, Driskell TD, Paulsrud JR (1982) Tricalcium phosphate ceramic: a resorbable bone implant: review and current status. J Am Dent Assoc 105:1035–1048CrossRefGoogle Scholar
  69. 69.
    Kanazawa Te (1989) Inorganic phosphate materials. In: Materials science monographs. Tokyo.Google Scholar
  70. 70.
    Brown PW, Martin R (1999) An analysis of hydroxyapatite surface layer formation. J Phys Chem B 103:1671–1675CrossRefGoogle Scholar
  71. 71.
    Habraken W, Habibovic P, Epple M, Bohner M (2016) Calcium phosphates in biomedical applications: materials for the future? Mater Today 19(2):69–87. doi: CrossRefGoogle Scholar
  72. 72.
    Brown WE, Chow LC (1983) A new calcium-phosphate setting cement. J Dent Res 62:672–672Google Scholar
  73. 73.
    Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials 27(10):2171–2177CrossRefGoogle Scholar
  74. 74.
    Dorozhkin SV (2008) Calcium orthophosphates cements for biomedical application. J Mater Sci: Mater in Med 43:3028–3057CrossRefGoogle Scholar
  75. 75.
    Bohner M (2007) Reactivity of calcium phosphate cements. J Mater Chem 17(38):3980–3986. CrossRefGoogle Scholar
  76. 76.
    Bohner M, Gbureck U (2008) Thermal reactions of brushite cements. J Biomed Mater Res Part B Appl Biomater 84B(2):375–385. CrossRefGoogle Scholar
  77. 77.
    Barralet JE, Lilley KJ, Grover LM, Farrar DF, Ansell C, Gbureck U (2004) Cements from nanocrystalline hydroxyapatite. J Mater Sci Mater Med 15(4):407–411CrossRefGoogle Scholar
  78. 78.
    Bauer TW, Muschler GF (2000) Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 371:10–27CrossRefGoogle Scholar
  79. 79.
    Pina S, Vieira SI, Torres PMC, Goetz-Neunhoeffer F, Neubauer J, Silva OABdCe, Silva EFdCe, Ferreira JMF (2010) In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J Biomed Mater Res B 94B:414–420Google Scholar
  80. 80.
  81. 81.
    Dorozhkin SV (2013) Self-setting calcium orthophosphate formulations. J Funct Biomater 4(4):209–311. CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Arcos D, Vallet-Regí M (2013) Bioceramics for drug delivery. Acta Mater 61(3):890–911. CrossRefGoogle Scholar
  83. 83.
    Mostaghaci B, Loretz B, Lehr CM (2016) Calcium phosphate system for gene delivery: historical background and emerging opportunities. Curr Pharm Design 22(11):1529–1533. CrossRefGoogle Scholar
  84. 84.
    Shekhar S, Roy A, Hong D, Kumta PN (2016) Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles - efficient calcium phosphate based non-viral gene delivery systems. Mater Sci Eng C Mater Biol Appl 69:486–495. CrossRefPubMedGoogle Scholar
  85. 85.
    Sherman SL, Thyssen E, Nuelle CW (2017) Osteochondral autologous transplantation. Clin Sports Med 36(3):489–500. CrossRefPubMedGoogle Scholar
  86. 86.
    Panseri S, Russo A, Cunha C, Bondi A, Di A, bullet M, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 20:1182–1191. CrossRefPubMedGoogle Scholar
  87. 87.
    Ng A, Bernhard K (2017) Osteochondral autograft and allograft transplantation in the talus. Clin Podiatr Med Surg 34(4):461–469. CrossRefPubMedGoogle Scholar
  88. 88.
    Begama H, Nandi SK, Kundu B, Chanda A (2017) Strategies for delivering bone morphogenetic protein for bone healing. Mater Sci Eng C 70:856–869. CrossRefGoogle Scholar
  89. 89.
    Ogawa K, Miyaji H, Kato A, Kosen Y, Momose T, Yoshida T, Nishida E, Miyata S, Murakami S, Takita H, Fugetsu B, Sugaya T, Kawanami M (2016) Periodontal tissue engineering by nano beta-tricalcium phosphate scaffold and fibroblast growth factor-2 in one-wall infrabony defects of dogs. J Periodont Res 51(6):758–767. CrossRefPubMedGoogle Scholar
  90. 90.
    Lv YM, Yu QS (2015) Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold. Bone Jt Res 4(4):56–64. CrossRefGoogle Scholar
  91. 91.
    Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z (2010) Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A 94(1):259–270. CrossRefPubMedGoogle Scholar
  92. 92.
    Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL (2009) Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. J Biomed Mater Res A 91A(1):175–186. CrossRefGoogle Scholar
  93. 93.
    Żylińska B, Stodolak-Zych E, Sobczyńska-Rak A, Szponder T, Silmanowicz P, Łańcut M, Jarosz Ł, Różański P, Polkowska I (2017) Osteochondral repair using porous three-dimensional Nanocomposite scaffolds in a rabbit model. In Vivo 31(5):895–903PubMedPubMedCentralGoogle Scholar
  94. 94.
    Li J, Kim K, Roohani-Esfahani S, Guo J, Kaplan D, Zreiqat H (2015) A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. J Mater Chem B Mater Biol Med. 3(26): 5361–5376CrossRefGoogle Scholar
  95. 95.
    Guo X, Wang C, Duan C, Descamps M, Zhao Q, Dong L, Lu S, Anselme K, Lu J, Song YQ, Lü S, Anselme K, Lu J, Song YQ (2004) Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng 10(11–12):1830–1840. CrossRefPubMedGoogle Scholar
  96. 96.
    Bian W, Li D, Lian Q, Li X, Zhang W, Wang K, Jin Z (2012) Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp J 18(1):68–80. CrossRefGoogle Scholar
  97. 97.
    Unther Heimke G, Leyen S, Willmann G (2002) Knee arthoplasty: recently developed ceramics offer new solutions. Biomaterials 23:1539–1551CrossRefGoogle Scholar
  98. 98.
    Pina S, Vieira SI, Rego P, Torres PMC, da Cruz e Silva OAB, da Cruz e Silva EF, ferreira JMF (2010) Biological responses of brushite-forming Zn- and ZnSr substituted β-tricalcium phosphate bone cements. Eur Cells Mater 20:162–177. doi: CrossRefPubMedGoogle Scholar
  99. 99.
    Flautre B, Maynou C, Lemaitre J, Van Landuyt P, Hardouin P (2002) Bone colonization of B-TCP granules incorporated in brushite cements. J Biomed Mater Res 63(4):413–417. CrossRefPubMedGoogle Scholar
  100. 100.
    Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, Breusch SJ (2006) An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27(18):3387–3395. CrossRefPubMedGoogle Scholar
  101. 101.
    Malafaya PB, Reis RL (2009) Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 5(2):644–660. CrossRefPubMedGoogle Scholar
  102. 102.
    Fiedler BA, Ferguson M (2017) Overview of medical device clinical trials. In. Elsevier, pp 17–32. doi: CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sandra Pina
    • 1
    • 2
    Email author
  • Rita Rebelo
    • 1
    • 2
  • Vitor Manuel Correlo
    • 1
    • 2
    • 3
  • J. Miguel Oliveira
    • 1
    • 2
    • 3
  • Rui L. Reis
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarcoPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBarcoPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of MinhoBarcoPortugal

Personalised recommendations